metabelian, supersoluble, monomial
Aliases: D36⋊1C6, 3- 1+2⋊2D8, C9⋊C8⋊2C6, D4⋊D9⋊C3, D4⋊(C9⋊C6), C9⋊2(C3×D8), C9⋊C24⋊2C2, (D4×C9)⋊1C6, D36⋊C3⋊1C2, C12.6(S3×C6), C36.2(C2×C6), C18.8(C3×D4), (C3×C12).11D6, C32.(D4⋊S3), (D4×C32).3S3, C2.5(Dic9⋊C6), (D4×3- 1+2)⋊1C2, (C2×3- 1+2).8D4, (C4×3- 1+2).2C22, C4.2(C2×C9⋊C6), C3.3(C3×D4⋊S3), (C3×D4).6(C3×S3), C6.23(C3×C3⋊D4), (C3×C6).26(C3⋊D4), SmallGroup(432,155)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C9 — C18 — C36 — C4×3- 1+2 — D36⋊C3 — D36⋊C6 |
Generators and relations for D36⋊C6
G = < a,b,c | a36=b2=c6=1, bab=a-1, cac-1=a7, cbc-1=a15b >
Subgroups: 334 in 74 conjugacy classes, 26 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C8, D4, D4, C9, C9, C32, C12, C12, D6, C2×C6, D8, D9, C18, C18, C3×S3, C3×C6, C3×C6, C3⋊C8, C24, D12, C3×D4, C3×D4, 3- 1+2, C36, C36, D18, C2×C18, C3×C12, S3×C6, C62, D4⋊S3, C3×D8, C9⋊C6, C2×3- 1+2, C2×3- 1+2, C9⋊C8, D36, D4×C9, D4×C9, C3×C3⋊C8, C3×D12, D4×C32, C4×3- 1+2, C2×C9⋊C6, C22×3- 1+2, D4⋊D9, C3×D4⋊S3, C9⋊C24, D36⋊C3, D4×3- 1+2, D36⋊C6
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2×C6, D8, C3×S3, C3⋊D4, C3×D4, S3×C6, D4⋊S3, C3×D8, C9⋊C6, C3×C3⋊D4, C2×C9⋊C6, C3×D4⋊S3, Dic9⋊C6, D36⋊C6
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 70)(2 69)(3 68)(4 67)(5 66)(6 65)(7 64)(8 63)(9 62)(10 61)(11 60)(12 59)(13 58)(14 57)(15 56)(16 55)(17 54)(18 53)(19 52)(20 51)(21 50)(22 49)(23 48)(24 47)(25 46)(26 45)(27 44)(28 43)(29 42)(30 41)(31 40)(32 39)(33 38)(34 37)(35 72)(36 71)
(2 32 26 20 14 8)(3 27 15)(4 22)(5 17 29)(6 12 18 24 30 36)(9 33 21)(10 28)(11 23 35)(16 34)(37 52 49 64 61 40)(38 47)(39 42 63 66 51 54)(41 68)(43 58 55 70 67 46)(44 53)(45 48 69 72 57 60)(50 59)(56 65)(62 71)
G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,70)(2,69)(3,68)(4,67)(5,66)(6,65)(7,64)(8,63)(9,62)(10,61)(11,60)(12,59)(13,58)(14,57)(15,56)(16,55)(17,54)(18,53)(19,52)(20,51)(21,50)(22,49)(23,48)(24,47)(25,46)(26,45)(27,44)(28,43)(29,42)(30,41)(31,40)(32,39)(33,38)(34,37)(35,72)(36,71), (2,32,26,20,14,8)(3,27,15)(4,22)(5,17,29)(6,12,18,24,30,36)(9,33,21)(10,28)(11,23,35)(16,34)(37,52,49,64,61,40)(38,47)(39,42,63,66,51,54)(41,68)(43,58,55,70,67,46)(44,53)(45,48,69,72,57,60)(50,59)(56,65)(62,71)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,70)(2,69)(3,68)(4,67)(5,66)(6,65)(7,64)(8,63)(9,62)(10,61)(11,60)(12,59)(13,58)(14,57)(15,56)(16,55)(17,54)(18,53)(19,52)(20,51)(21,50)(22,49)(23,48)(24,47)(25,46)(26,45)(27,44)(28,43)(29,42)(30,41)(31,40)(32,39)(33,38)(34,37)(35,72)(36,71), (2,32,26,20,14,8)(3,27,15)(4,22)(5,17,29)(6,12,18,24,30,36)(9,33,21)(10,28)(11,23,35)(16,34)(37,52,49,64,61,40)(38,47)(39,42,63,66,51,54)(41,68)(43,58,55,70,67,46)(44,53)(45,48,69,72,57,60)(50,59)(56,65)(62,71) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,70),(2,69),(3,68),(4,67),(5,66),(6,65),(7,64),(8,63),(9,62),(10,61),(11,60),(12,59),(13,58),(14,57),(15,56),(16,55),(17,54),(18,53),(19,52),(20,51),(21,50),(22,49),(23,48),(24,47),(25,46),(26,45),(27,44),(28,43),(29,42),(30,41),(31,40),(32,39),(33,38),(34,37),(35,72),(36,71)], [(2,32,26,20,14,8),(3,27,15),(4,22),(5,17,29),(6,12,18,24,30,36),(9,33,21),(10,28),(11,23,35),(16,34),(37,52,49,64,61,40),(38,47),(39,42,63,66,51,54),(41,68),(43,58,55,70,67,46),(44,53),(45,48,69,72,57,60),(50,59),(56,65),(62,71)]])
41 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 4 | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 8A | 8B | 9A | 9B | 9C | 12A | 12B | 12C | 18A | 18B | 18C | 18D | ··· | 18I | 24A | 24B | 24C | 24D | 36A | 36B | 36C |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 9 | 9 | 9 | 12 | 12 | 12 | 18 | 18 | 18 | 18 | ··· | 18 | 24 | 24 | 24 | 24 | 36 | 36 | 36 |
size | 1 | 1 | 4 | 36 | 2 | 3 | 3 | 2 | 2 | 3 | 3 | 4 | 4 | 12 | 12 | 36 | 36 | 18 | 18 | 6 | 6 | 6 | 4 | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 | 18 | 18 | 18 | 18 | 12 | 12 | 12 |
41 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 12 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 6 | 6 | 6 |
type | + | + | + | + | + | + | + | + | + | + | + | + | ||||||||||||
image | C1 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | D36⋊C6 | S3 | D4 | D6 | D8 | C3×S3 | C3×D4 | C3⋊D4 | S3×C6 | C3×D8 | C3×C3⋊D4 | D4⋊S3 | C3×D4⋊S3 | C9⋊C6 | C2×C9⋊C6 | Dic9⋊C6 |
kernel | D36⋊C6 | C9⋊C24 | D36⋊C3 | D4×3- 1+2 | D4⋊D9 | C9⋊C8 | D36 | D4×C9 | C1 | D4×C32 | C2×3- 1+2 | C3×C12 | 3- 1+2 | C3×D4 | C18 | C3×C6 | C12 | C9 | C6 | C32 | C3 | D4 | C4 | C2 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | 2 | 1 | 1 | 2 |
Matrix representation of D36⋊C6 ►in GL10(𝔽73)
0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
72 | 1 | 71 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 72 | 1 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 64 | 64 | 56 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 15 | 49 | 72 | 10 | 0 |
0 | 0 | 0 | 0 | 16 | 16 | 71 | 0 | 1 | 72 |
0 | 0 | 0 | 0 | 35 | 32 | 69 | 8 | 1 | 0 |
0 | 0 | 32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 32 | 41 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 57 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 41 | 29 | 54 | 2 | 53 | 0 |
0 | 0 | 0 | 0 | 62 | 21 | 0 | 2 | 0 | 53 |
0 | 0 | 0 | 0 | 68 | 68 | 53 | 71 | 2 | 2 |
0 | 0 | 0 | 0 | 8 | 23 | 14 | 34 | 25 | 0 |
0 | 0 | 0 | 0 | 59 | 13 | 7 | 5 | 18 | 64 |
0 | 0 | 0 | 0 | 47 | 12 | 52 | 19 | 50 | 52 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
72 | 0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 64 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 8 | 9 | 8 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 34 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 67 | 42 | 63 | 72 | 9 | 0 |
0 | 0 | 0 | 0 | 24 | 61 | 0 | 8 | 0 | 65 |
G:=sub<GL(10,GF(73))| [0,72,0,1,0,0,0,0,0,0,1,1,72,72,0,0,0,0,0,0,0,71,0,1,0,0,0,0,0,0,2,2,72,72,0,0,0,0,0,0,0,0,0,0,64,72,1,9,16,35,0,0,0,0,64,0,1,15,16,32,0,0,0,0,56,0,9,49,71,69,0,0,0,0,0,0,0,72,0,8,0,0,0,0,0,0,0,10,1,1,0,0,0,0,0,0,0,0,72,0],[0,0,16,16,0,0,0,0,0,0,0,0,0,57,0,0,0,0,0,0,32,32,0,0,0,0,0,0,0,0,0,41,0,0,0,0,0,0,0,0,0,0,0,0,41,62,68,8,59,47,0,0,0,0,29,21,68,23,13,12,0,0,0,0,54,0,53,14,7,52,0,0,0,0,2,2,71,34,5,19,0,0,0,0,53,0,2,25,18,50,0,0,0,0,0,53,2,0,64,52],[1,0,72,0,0,0,0,0,0,0,0,1,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,1,0,8,34,67,24,0,0,0,0,0,64,9,0,42,61,0,0,0,0,0,0,8,0,63,0,0,0,0,0,0,0,0,72,72,8,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,65] >;
D36⋊C6 in GAP, Magma, Sage, TeX
D_{36}\rtimes C_6
% in TeX
G:=Group("D36:C6");
// GroupNames label
G:=SmallGroup(432,155);
// by ID
G=gap.SmallGroup(432,155);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,197,1011,514,80,10085,2035,292,14118]);
// Polycyclic
G:=Group<a,b,c|a^36=b^2=c^6=1,b*a*b=a^-1,c*a*c^-1=a^7,c*b*c^-1=a^15*b>;
// generators/relations