Extensions 1→N→G→Q→1 with N=C3 and Q=C2×S3×A4

Direct product G=N×Q with N=C3 and Q=C2×S3×A4
dρLabelID
S3×C6×A4366S3xC6xA4432,763

Semidirect products G=N:Q with N=C3 and Q=C2×S3×A4
extensionφ:Q→Aut NdρLabelID
C31(C2×S3×A4) = S32×A4φ: C2×S3×A4/S3×A4C2 ⊆ Aut C32412+C3:1(C2xS3xA4)432,749
C32(C2×S3×A4) = C2×A4×C3⋊S3φ: C2×S3×A4/C6×A4C2 ⊆ Aut C354C3:2(C2xS3xA4)432,764

Non-split extensions G=N.Q with N=C3 and Q=C2×S3×A4
extensionφ:Q→Aut NdρLabelID
C3.1(C2×S3×A4) = C2×D9⋊A4φ: C2×S3×A4/C6×A4C2 ⊆ Aut C3546+C3.1(C2xS3xA4)432,539
C3.2(C2×S3×A4) = C2×A4×D9φ: C2×S3×A4/C6×A4C2 ⊆ Aut C3546+C3.2(C2xS3xA4)432,540
C3.3(C2×S3×A4) = C2×C62⋊C6φ: C2×S3×A4/C6×A4C2 ⊆ Aut C3186+C3.3(C2xS3xA4)432,542
C3.4(C2×S3×A4) = C2×S3×C3.A4central extension (φ=1)366C3.4(C2xS3xA4)432,541

׿
×
𝔽