metacyclic, supersoluble, monomial, Z-group
Aliases: C73⋊C6, D73⋊C3, C73⋊C3⋊C2, SmallGroup(438,1)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C73 — C73⋊C3 — C73⋊C6 |
C73 — C73⋊C6 |
Generators and relations for C73⋊C6
G = < a,b | a73=b6=1, bab-1=a65 >
Character table of C73⋊C6
class | 1 | 2 | 3A | 3B | 6A | 6B | 73A | 73B | 73C | 73D | 73E | 73F | 73G | 73H | 73I | 73J | 73K | 73L | |
size | 1 | 73 | 73 | 73 | 73 | 73 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | ζ32 | ζ3 | ζ6 | ζ65 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ4 | 1 | -1 | ζ3 | ζ32 | ζ65 | ζ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ5 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ6 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ7 | 6 | 0 | 0 | 0 | 0 | 0 | ζ7360+ζ7344+ζ7342+ζ7331+ζ7329+ζ7313 | ζ7370+ζ7349+ζ7346+ζ7327+ζ7324+ζ733 | ζ7369+ζ7341+ζ7337+ζ7336+ζ7332+ζ734 | ζ7362+ζ7358+ζ7347+ζ7326+ζ7315+ζ7311 | ζ7371+ζ7357+ζ7355+ζ7318+ζ7316+ζ732 | ζ7367+ζ7354+ζ7348+ζ7325+ζ7319+ζ736 | ζ7372+ζ7365+ζ7364+ζ739+ζ738+ζ73 | ζ7366+ζ7363+ζ7356+ζ7317+ζ7310+ζ737 | ζ7359+ζ7353+ζ7339+ζ7334+ζ7320+ζ7314 | ζ7352+ζ7351+ζ7343+ζ7330+ζ7322+ζ7321 | ζ7368+ζ7345+ζ7340+ζ7333+ζ7328+ζ735 | ζ7361+ζ7350+ζ7338+ζ7335+ζ7323+ζ7312 | orthogonal faithful |
ρ8 | 6 | 0 | 0 | 0 | 0 | 0 | ζ7359+ζ7353+ζ7339+ζ7334+ζ7320+ζ7314 | ζ7372+ζ7365+ζ7364+ζ739+ζ738+ζ73 | ζ7361+ζ7350+ζ7338+ζ7335+ζ7323+ζ7312 | ζ7368+ζ7345+ζ7340+ζ7333+ζ7328+ζ735 | ζ7367+ζ7354+ζ7348+ζ7325+ζ7319+ζ736 | ζ7371+ζ7357+ζ7355+ζ7318+ζ7316+ζ732 | ζ7370+ζ7349+ζ7346+ζ7327+ζ7324+ζ733 | ζ7352+ζ7351+ζ7343+ζ7330+ζ7322+ζ7321 | ζ7360+ζ7344+ζ7342+ζ7331+ζ7329+ζ7313 | ζ7366+ζ7363+ζ7356+ζ7317+ζ7310+ζ737 | ζ7362+ζ7358+ζ7347+ζ7326+ζ7315+ζ7311 | ζ7369+ζ7341+ζ7337+ζ7336+ζ7332+ζ734 | orthogonal faithful |
ρ9 | 6 | 0 | 0 | 0 | 0 | 0 | ζ7366+ζ7363+ζ7356+ζ7317+ζ7310+ζ737 | ζ7369+ζ7341+ζ7337+ζ7336+ζ7332+ζ734 | ζ7367+ζ7354+ζ7348+ζ7325+ζ7319+ζ736 | ζ7359+ζ7353+ζ7339+ζ7334+ζ7320+ζ7314 | ζ7370+ζ7349+ζ7346+ζ7327+ζ7324+ζ733 | ζ7372+ζ7365+ζ7364+ζ739+ζ738+ζ73 | ζ7361+ζ7350+ζ7338+ζ7335+ζ7323+ζ7312 | ζ7362+ζ7358+ζ7347+ζ7326+ζ7315+ζ7311 | ζ7352+ζ7351+ζ7343+ζ7330+ζ7322+ζ7321 | ζ7368+ζ7345+ζ7340+ζ7333+ζ7328+ζ735 | ζ7360+ζ7344+ζ7342+ζ7331+ζ7329+ζ7313 | ζ7371+ζ7357+ζ7355+ζ7318+ζ7316+ζ732 | orthogonal faithful |
ρ10 | 6 | 0 | 0 | 0 | 0 | 0 | ζ7361+ζ7350+ζ7338+ζ7335+ζ7323+ζ7312 | ζ7359+ζ7353+ζ7339+ζ7334+ζ7320+ζ7314 | ζ7352+ζ7351+ζ7343+ζ7330+ζ7322+ζ7321 | ζ7370+ζ7349+ζ7346+ζ7327+ζ7324+ζ733 | ζ7362+ζ7358+ζ7347+ζ7326+ζ7315+ζ7311 | ζ7368+ζ7345+ζ7340+ζ7333+ζ7328+ζ735 | ζ7360+ζ7344+ζ7342+ζ7331+ζ7329+ζ7313 | ζ7371+ζ7357+ζ7355+ζ7318+ζ7316+ζ732 | ζ7369+ζ7341+ζ7337+ζ7336+ζ7332+ζ734 | ζ7367+ζ7354+ζ7348+ζ7325+ζ7319+ζ736 | ζ7372+ζ7365+ζ7364+ζ739+ζ738+ζ73 | ζ7366+ζ7363+ζ7356+ζ7317+ζ7310+ζ737 | orthogonal faithful |
ρ11 | 6 | 0 | 0 | 0 | 0 | 0 | ζ7372+ζ7365+ζ7364+ζ739+ζ738+ζ73 | ζ7362+ζ7358+ζ7347+ζ7326+ζ7315+ζ7311 | ζ7359+ζ7353+ζ7339+ζ7334+ζ7320+ζ7314 | ζ7371+ζ7357+ζ7355+ζ7318+ζ7316+ζ732 | ζ7366+ζ7363+ζ7356+ζ7317+ζ7310+ζ737 | ζ7352+ζ7351+ζ7343+ζ7330+ζ7322+ζ7321 | ζ7368+ζ7345+ζ7340+ζ7333+ζ7328+ζ735 | ζ7361+ζ7350+ζ7338+ζ7335+ζ7323+ζ7312 | ζ7370+ζ7349+ζ7346+ζ7327+ζ7324+ζ733 | ζ7369+ζ7341+ζ7337+ζ7336+ζ7332+ζ734 | ζ7367+ζ7354+ζ7348+ζ7325+ζ7319+ζ736 | ζ7360+ζ7344+ζ7342+ζ7331+ζ7329+ζ7313 | orthogonal faithful |
ρ12 | 6 | 0 | 0 | 0 | 0 | 0 | ζ7368+ζ7345+ζ7340+ζ7333+ζ7328+ζ735 | ζ7371+ζ7357+ζ7355+ζ7318+ζ7316+ζ732 | ζ7370+ζ7349+ζ7346+ζ7327+ζ7324+ζ733 | ζ7366+ζ7363+ζ7356+ζ7317+ζ7310+ζ737 | ζ7361+ζ7350+ζ7338+ζ7335+ζ7323+ζ7312 | ζ7369+ζ7341+ζ7337+ζ7336+ζ7332+ζ734 | ζ7367+ζ7354+ζ7348+ζ7325+ζ7319+ζ736 | ζ7360+ζ7344+ζ7342+ζ7331+ζ7329+ζ7313 | ζ7362+ζ7358+ζ7347+ζ7326+ζ7315+ζ7311 | ζ7359+ζ7353+ζ7339+ζ7334+ζ7320+ζ7314 | ζ7352+ζ7351+ζ7343+ζ7330+ζ7322+ζ7321 | ζ7372+ζ7365+ζ7364+ζ739+ζ738+ζ73 | orthogonal faithful |
ρ13 | 6 | 0 | 0 | 0 | 0 | 0 | ζ7352+ζ7351+ζ7343+ζ7330+ζ7322+ζ7321 | ζ7361+ζ7350+ζ7338+ζ7335+ζ7323+ζ7312 | ζ7371+ζ7357+ζ7355+ζ7318+ζ7316+ζ732 | ζ7360+ζ7344+ζ7342+ζ7331+ζ7329+ζ7313 | ζ7372+ζ7365+ζ7364+ζ739+ζ738+ζ73 | ζ7370+ζ7349+ζ7346+ζ7327+ζ7324+ζ733 | ζ7369+ζ7341+ζ7337+ζ7336+ζ7332+ζ734 | ζ7368+ζ7345+ζ7340+ζ7333+ζ7328+ζ735 | ζ7366+ζ7363+ζ7356+ζ7317+ζ7310+ζ737 | ζ7362+ζ7358+ζ7347+ζ7326+ζ7315+ζ7311 | ζ7359+ζ7353+ζ7339+ζ7334+ζ7320+ζ7314 | ζ7367+ζ7354+ζ7348+ζ7325+ζ7319+ζ736 | orthogonal faithful |
ρ14 | 6 | 0 | 0 | 0 | 0 | 0 | ζ7370+ζ7349+ζ7346+ζ7327+ζ7324+ζ733 | ζ7368+ζ7345+ζ7340+ζ7333+ζ7328+ζ735 | ζ7360+ζ7344+ζ7342+ζ7331+ζ7329+ζ7313 | ζ7367+ζ7354+ζ7348+ζ7325+ζ7319+ζ736 | ζ7352+ζ7351+ζ7343+ζ7330+ζ7322+ζ7321 | ζ7366+ζ7363+ζ7356+ζ7317+ζ7310+ζ737 | ζ7362+ζ7358+ζ7347+ζ7326+ζ7315+ζ7311 | ζ7369+ζ7341+ζ7337+ζ7336+ζ7332+ζ734 | ζ7372+ζ7365+ζ7364+ζ739+ζ738+ζ73 | ζ7361+ζ7350+ζ7338+ζ7335+ζ7323+ζ7312 | ζ7371+ζ7357+ζ7355+ζ7318+ζ7316+ζ732 | ζ7359+ζ7353+ζ7339+ζ7334+ζ7320+ζ7314 | orthogonal faithful |
ρ15 | 6 | 0 | 0 | 0 | 0 | 0 | ζ7371+ζ7357+ζ7355+ζ7318+ζ7316+ζ732 | ζ7352+ζ7351+ζ7343+ζ7330+ζ7322+ζ7321 | ζ7368+ζ7345+ζ7340+ζ7333+ζ7328+ζ735 | ζ7369+ζ7341+ζ7337+ζ7336+ζ7332+ζ734 | ζ7359+ζ7353+ζ7339+ζ7334+ζ7320+ζ7314 | ζ7360+ζ7344+ζ7342+ζ7331+ζ7329+ζ7313 | ζ7366+ζ7363+ζ7356+ζ7317+ζ7310+ζ737 | ζ7370+ζ7349+ζ7346+ζ7327+ζ7324+ζ733 | ζ7367+ζ7354+ζ7348+ζ7325+ζ7319+ζ736 | ζ7372+ζ7365+ζ7364+ζ739+ζ738+ζ73 | ζ7361+ζ7350+ζ7338+ζ7335+ζ7323+ζ7312 | ζ7362+ζ7358+ζ7347+ζ7326+ζ7315+ζ7311 | orthogonal faithful |
ρ16 | 6 | 0 | 0 | 0 | 0 | 0 | ζ7369+ζ7341+ζ7337+ζ7336+ζ7332+ζ734 | ζ7360+ζ7344+ζ7342+ζ7331+ζ7329+ζ7313 | ζ7366+ζ7363+ζ7356+ζ7317+ζ7310+ζ737 | ζ7372+ζ7365+ζ7364+ζ739+ζ738+ζ73 | ζ7368+ζ7345+ζ7340+ζ7333+ζ7328+ζ735 | ζ7362+ζ7358+ζ7347+ζ7326+ζ7315+ζ7311 | ζ7359+ζ7353+ζ7339+ζ7334+ζ7320+ζ7314 | ζ7367+ζ7354+ζ7348+ζ7325+ζ7319+ζ736 | ζ7361+ζ7350+ζ7338+ζ7335+ζ7323+ζ7312 | ζ7371+ζ7357+ζ7355+ζ7318+ζ7316+ζ732 | ζ7370+ζ7349+ζ7346+ζ7327+ζ7324+ζ733 | ζ7352+ζ7351+ζ7343+ζ7330+ζ7322+ζ7321 | orthogonal faithful |
ρ17 | 6 | 0 | 0 | 0 | 0 | 0 | ζ7367+ζ7354+ζ7348+ζ7325+ζ7319+ζ736 | ζ7366+ζ7363+ζ7356+ζ7317+ζ7310+ζ737 | ζ7362+ζ7358+ζ7347+ζ7326+ζ7315+ζ7311 | ζ7361+ζ7350+ζ7338+ζ7335+ζ7323+ζ7312 | ζ7360+ζ7344+ζ7342+ζ7331+ζ7329+ζ7313 | ζ7359+ζ7353+ζ7339+ζ7334+ζ7320+ζ7314 | ζ7352+ζ7351+ζ7343+ζ7330+ζ7322+ζ7321 | ζ7372+ζ7365+ζ7364+ζ739+ζ738+ζ73 | ζ7371+ζ7357+ζ7355+ζ7318+ζ7316+ζ732 | ζ7370+ζ7349+ζ7346+ζ7327+ζ7324+ζ733 | ζ7369+ζ7341+ζ7337+ζ7336+ζ7332+ζ734 | ζ7368+ζ7345+ζ7340+ζ7333+ζ7328+ζ735 | orthogonal faithful |
ρ18 | 6 | 0 | 0 | 0 | 0 | 0 | ζ7362+ζ7358+ζ7347+ζ7326+ζ7315+ζ7311 | ζ7367+ζ7354+ζ7348+ζ7325+ζ7319+ζ736 | ζ7372+ζ7365+ζ7364+ζ739+ζ738+ζ73 | ζ7352+ζ7351+ζ7343+ζ7330+ζ7322+ζ7321 | ζ7369+ζ7341+ζ7337+ζ7336+ζ7332+ζ734 | ζ7361+ζ7350+ζ7338+ζ7335+ζ7323+ζ7312 | ζ7371+ζ7357+ζ7355+ζ7318+ζ7316+ζ732 | ζ7359+ζ7353+ζ7339+ζ7334+ζ7320+ζ7314 | ζ7368+ζ7345+ζ7340+ζ7333+ζ7328+ζ735 | ζ7360+ζ7344+ζ7342+ζ7331+ζ7329+ζ7313 | ζ7366+ζ7363+ζ7356+ζ7317+ζ7310+ζ737 | ζ7370+ζ7349+ζ7346+ζ7327+ζ7324+ζ733 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73)
(2 10 9 73 65 66)(3 19 17 72 56 58)(4 28 25 71 47 50)(5 37 33 70 38 42)(6 46 41 69 29 34)(7 55 49 68 20 26)(8 64 57 67 11 18)(12 27 16 63 48 59)(13 36 24 62 39 51)(14 45 32 61 30 43)(15 54 40 60 21 35)(22 44 23 53 31 52)
G:=sub<Sym(73)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73), (2,10,9,73,65,66)(3,19,17,72,56,58)(4,28,25,71,47,50)(5,37,33,70,38,42)(6,46,41,69,29,34)(7,55,49,68,20,26)(8,64,57,67,11,18)(12,27,16,63,48,59)(13,36,24,62,39,51)(14,45,32,61,30,43)(15,54,40,60,21,35)(22,44,23,53,31,52)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73), (2,10,9,73,65,66)(3,19,17,72,56,58)(4,28,25,71,47,50)(5,37,33,70,38,42)(6,46,41,69,29,34)(7,55,49,68,20,26)(8,64,57,67,11,18)(12,27,16,63,48,59)(13,36,24,62,39,51)(14,45,32,61,30,43)(15,54,40,60,21,35)(22,44,23,53,31,52) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73)], [(2,10,9,73,65,66),(3,19,17,72,56,58),(4,28,25,71,47,50),(5,37,33,70,38,42),(6,46,41,69,29,34),(7,55,49,68,20,26),(8,64,57,67,11,18),(12,27,16,63,48,59),(13,36,24,62,39,51),(14,45,32,61,30,43),(15,54,40,60,21,35),(22,44,23,53,31,52)]])
Matrix representation of C73⋊C6 ►in GL6(𝔽439)
89 | 1 | 0 | 0 | 0 | 0 |
264 | 0 | 1 | 0 | 0 | 0 |
399 | 0 | 0 | 1 | 0 | 0 |
243 | 0 | 0 | 0 | 1 | 0 |
70 | 0 | 0 | 0 | 0 | 1 |
66 | 400 | 344 | 242 | 156 | 131 |
381 | 4 | 425 | 7 | 194 | 214 |
378 | 412 | 157 | 370 | 199 | 72 |
56 | 105 | 187 | 407 | 75 | 285 |
373 | 265 | 26 | 377 | 185 | 411 |
427 | 32 | 340 | 380 | 252 | 42 |
385 | 39 | 26 | 334 | 345 | 147 |
G:=sub<GL(6,GF(439))| [89,264,399,243,70,66,1,0,0,0,0,400,0,1,0,0,0,344,0,0,1,0,0,242,0,0,0,1,0,156,0,0,0,0,1,131],[381,378,56,373,427,385,4,412,105,265,32,39,425,157,187,26,340,26,7,370,407,377,380,334,194,199,75,185,252,345,214,72,285,411,42,147] >;
C73⋊C6 in GAP, Magma, Sage, TeX
C_{73}\rtimes C_6
% in TeX
G:=Group("C73:C6");
// GroupNames label
G:=SmallGroup(438,1);
// by ID
G=gap.SmallGroup(438,1);
# by ID
G:=PCGroup([3,-2,-3,-73,3890,221]);
// Polycyclic
G:=Group<a,b|a^73=b^6=1,b*a*b^-1=a^65>;
// generators/relations
Export
Subgroup lattice of C73⋊C6 in TeX
Character table of C73⋊C6 in TeX