Copied to
clipboard

G = D219order 438 = 2·3·73

Dihedral group

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: D219, C73⋊S3, C3⋊D73, C2191C2, sometimes denoted D438 or Dih219 or Dih438, SmallGroup(438,5)

Series: Derived Chief Lower central Upper central

C1C219 — D219
C1C73C219 — D219
C219 — D219
C1

Generators and relations for D219
 G = < a,b | a219=b2=1, bab=a-1 >

219C2
73S3
3D73

Smallest permutation representation of D219
On 219 points
Generators in S219
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219)
(1 219)(2 218)(3 217)(4 216)(5 215)(6 214)(7 213)(8 212)(9 211)(10 210)(11 209)(12 208)(13 207)(14 206)(15 205)(16 204)(17 203)(18 202)(19 201)(20 200)(21 199)(22 198)(23 197)(24 196)(25 195)(26 194)(27 193)(28 192)(29 191)(30 190)(31 189)(32 188)(33 187)(34 186)(35 185)(36 184)(37 183)(38 182)(39 181)(40 180)(41 179)(42 178)(43 177)(44 176)(45 175)(46 174)(47 173)(48 172)(49 171)(50 170)(51 169)(52 168)(53 167)(54 166)(55 165)(56 164)(57 163)(58 162)(59 161)(60 160)(61 159)(62 158)(63 157)(64 156)(65 155)(66 154)(67 153)(68 152)(69 151)(70 150)(71 149)(72 148)(73 147)(74 146)(75 145)(76 144)(77 143)(78 142)(79 141)(80 140)(81 139)(82 138)(83 137)(84 136)(85 135)(86 134)(87 133)(88 132)(89 131)(90 130)(91 129)(92 128)(93 127)(94 126)(95 125)(96 124)(97 123)(98 122)(99 121)(100 120)(101 119)(102 118)(103 117)(104 116)(105 115)(106 114)(107 113)(108 112)(109 111)

G:=sub<Sym(219)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219), (1,219)(2,218)(3,217)(4,216)(5,215)(6,214)(7,213)(8,212)(9,211)(10,210)(11,209)(12,208)(13,207)(14,206)(15,205)(16,204)(17,203)(18,202)(19,201)(20,200)(21,199)(22,198)(23,197)(24,196)(25,195)(26,194)(27,193)(28,192)(29,191)(30,190)(31,189)(32,188)(33,187)(34,186)(35,185)(36,184)(37,183)(38,182)(39,181)(40,180)(41,179)(42,178)(43,177)(44,176)(45,175)(46,174)(47,173)(48,172)(49,171)(50,170)(51,169)(52,168)(53,167)(54,166)(55,165)(56,164)(57,163)(58,162)(59,161)(60,160)(61,159)(62,158)(63,157)(64,156)(65,155)(66,154)(67,153)(68,152)(69,151)(70,150)(71,149)(72,148)(73,147)(74,146)(75,145)(76,144)(77,143)(78,142)(79,141)(80,140)(81,139)(82,138)(83,137)(84,136)(85,135)(86,134)(87,133)(88,132)(89,131)(90,130)(91,129)(92,128)(93,127)(94,126)(95,125)(96,124)(97,123)(98,122)(99,121)(100,120)(101,119)(102,118)(103,117)(104,116)(105,115)(106,114)(107,113)(108,112)(109,111)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219), (1,219)(2,218)(3,217)(4,216)(5,215)(6,214)(7,213)(8,212)(9,211)(10,210)(11,209)(12,208)(13,207)(14,206)(15,205)(16,204)(17,203)(18,202)(19,201)(20,200)(21,199)(22,198)(23,197)(24,196)(25,195)(26,194)(27,193)(28,192)(29,191)(30,190)(31,189)(32,188)(33,187)(34,186)(35,185)(36,184)(37,183)(38,182)(39,181)(40,180)(41,179)(42,178)(43,177)(44,176)(45,175)(46,174)(47,173)(48,172)(49,171)(50,170)(51,169)(52,168)(53,167)(54,166)(55,165)(56,164)(57,163)(58,162)(59,161)(60,160)(61,159)(62,158)(63,157)(64,156)(65,155)(66,154)(67,153)(68,152)(69,151)(70,150)(71,149)(72,148)(73,147)(74,146)(75,145)(76,144)(77,143)(78,142)(79,141)(80,140)(81,139)(82,138)(83,137)(84,136)(85,135)(86,134)(87,133)(88,132)(89,131)(90,130)(91,129)(92,128)(93,127)(94,126)(95,125)(96,124)(97,123)(98,122)(99,121)(100,120)(101,119)(102,118)(103,117)(104,116)(105,115)(106,114)(107,113)(108,112)(109,111) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219)], [(1,219),(2,218),(3,217),(4,216),(5,215),(6,214),(7,213),(8,212),(9,211),(10,210),(11,209),(12,208),(13,207),(14,206),(15,205),(16,204),(17,203),(18,202),(19,201),(20,200),(21,199),(22,198),(23,197),(24,196),(25,195),(26,194),(27,193),(28,192),(29,191),(30,190),(31,189),(32,188),(33,187),(34,186),(35,185),(36,184),(37,183),(38,182),(39,181),(40,180),(41,179),(42,178),(43,177),(44,176),(45,175),(46,174),(47,173),(48,172),(49,171),(50,170),(51,169),(52,168),(53,167),(54,166),(55,165),(56,164),(57,163),(58,162),(59,161),(60,160),(61,159),(62,158),(63,157),(64,156),(65,155),(66,154),(67,153),(68,152),(69,151),(70,150),(71,149),(72,148),(73,147),(74,146),(75,145),(76,144),(77,143),(78,142),(79,141),(80,140),(81,139),(82,138),(83,137),(84,136),(85,135),(86,134),(87,133),(88,132),(89,131),(90,130),(91,129),(92,128),(93,127),(94,126),(95,125),(96,124),(97,123),(98,122),(99,121),(100,120),(101,119),(102,118),(103,117),(104,116),(105,115),(106,114),(107,113),(108,112),(109,111)]])

111 conjugacy classes

class 1  2  3 73A···73AJ219A···219BT
order12373···73219···219
size121922···22···2

111 irreducible representations

dim11222
type+++++
imageC1C2S3D73D219
kernelD219C219C73C3C1
# reps1113672

Matrix representation of D219 in GL2(𝔽439) generated by

35985
354222
,
35985
5980
G:=sub<GL(2,GF(439))| [359,354,85,222],[359,59,85,80] >;

D219 in GAP, Magma, Sage, TeX

D_{219}
% in TeX

G:=Group("D219");
// GroupNames label

G:=SmallGroup(438,5);
// by ID

G=gap.SmallGroup(438,5);
# by ID

G:=PCGroup([3,-2,-3,-73,25,3890]);
// Polycyclic

G:=Group<a,b|a^219=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D219 in TeX

׿
×
𝔽