Extensions 1→N→G→Q→1 with N=C2 and Q=D4.D14

Direct product G=N×Q with N=C2 and Q=D4.D14
dρLabelID
C2×D4.D14112C2xD4.D14448,1246


Non-split extensions G=N.Q with N=C2 and Q=D4.D14
extensionφ:Q→Aut NdρLabelID
C2.1(D4.D14) = C4.Dic7⋊C4central extension (φ=1)224C2.1(D4.D14)448,498
C2.2(D4.D14) = C4○D28⋊C4central extension (φ=1)224C2.2(D4.D14)448,500
C2.3(D4.D14) = C42.48D14central extension (φ=1)224C2.3(D4.D14)448,548
C2.4(D4.D14) = C42.51D14central extension (φ=1)224C2.4(D4.D14)448,552
C2.5(D4.D14) = (D4×C14)⋊6C4central extension (φ=1)112C2.5(D4.D14)448,749
C2.6(D4.D14) = C4⋊C4.228D14central stem extension (φ=1)224C2.6(D4.D14)448,502
C2.7(D4.D14) = C4⋊C4.230D14central stem extension (φ=1)224C2.7(D4.D14)448,504
C2.8(D4.D14) = D4.3Dic14central stem extension (φ=1)224C2.8(D4.D14)448,543
C2.9(D4.D14) = D4.1D28central stem extension (φ=1)224C2.9(D4.D14)448,550
C2.10(D4.D14) = (C2×D4).D14central stem extension (φ=1)224C2.10(D4.D14)448,569
C2.11(D4.D14) = D2817D4central stem extension (φ=1)224C2.11(D4.D14)448,571
C2.12(D4.D14) = C4⋊D4⋊D7central stem extension (φ=1)224C2.12(D4.D14)448,573
C2.13(D4.D14) = C7⋊C85D4central stem extension (φ=1)224C2.13(D4.D14)448,576
C2.14(D4.D14) = C42.72D14central stem extension (φ=1)224C2.14(D4.D14)448,605
C2.15(D4.D14) = C282D8central stem extension (φ=1)224C2.15(D4.D14)448,606
C2.16(D4.D14) = C42.74D14central stem extension (φ=1)224C2.16(D4.D14)448,608
C2.17(D4.D14) = Dic149D4central stem extension (φ=1)224C2.17(D4.D14)448,609
C2.18(D4.D14) = C42.76D14central stem extension (φ=1)448C2.18(D4.D14)448,614
C2.19(D4.D14) = D285Q8central stem extension (φ=1)224C2.19(D4.D14)448,618
C2.20(D4.D14) = C42.82D14central stem extension (φ=1)224C2.20(D4.D14)448,623
C2.21(D4.D14) = Dic145Q8central stem extension (φ=1)448C2.21(D4.D14)448,625
C2.22(D4.D14) = (C2×C14)⋊8D8central stem extension (φ=1)112C2.22(D4.D14)448,751
C2.23(D4.D14) = (C7×D4).31D4central stem extension (φ=1)112C2.23(D4.D14)448,752

׿
×
𝔽