Copied to
clipboard

G = (C2×C14)⋊8D8order 448 = 26·7

2nd semidirect product of C2×C14 and D8 acting via D8/D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×C14)⋊8D8, (C7×D4)⋊13D4, D45(C7⋊D4), C75(C22⋊D8), C14.72(C2×D8), (C22×D4)⋊1D7, C287D425C2, C223(D4⋊D7), (C2×C28).300D4, C28.205(C2×D4), C14.71C22≀C2, (C2×D4).198D14, D4⋊Dic738C2, (C2×D28)⋊14C22, C4⋊Dic721C22, C28.55D415C2, (C2×C28).472C23, (C22×C4).149D14, (C22×C14).196D4, C2.4(C24⋊D7), C23.85(C7⋊D4), C14.102(C8⋊C22), (D4×C14).240C22, C2.22(D4.D14), (C22×C28).197C22, (D4×C2×C14)⋊1C2, (C2×D4⋊D7)⋊23C2, (C2×C7⋊C8)⋊10C22, C2.26(C2×D4⋊D7), C4.58(C2×C7⋊D4), (C2×C14).553(C2×D4), (C2×C4).83(C7⋊D4), (C2×C4).558(C22×D7), C22.216(C2×C7⋊D4), SmallGroup(448,751)

Series: Derived Chief Lower central Upper central

C1C2×C28 — (C2×C14)⋊8D8
C1C7C14C2×C14C2×C28C2×D28C2×D4⋊D7 — (C2×C14)⋊8D8
C7C14C2×C28 — (C2×C14)⋊8D8
C1C22C22×C4C22×D4

Generators and relations for (C2×C14)⋊8D8
 G = < a,b,c,d | a2=b14=c8=d2=1, ab=ba, cac-1=dad=ab7, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 852 in 198 conjugacy classes, 51 normal (25 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C7, C8, C2×C4, C2×C4, D4, D4, C23, C23, D7, C14, C14, C22⋊C4, C4⋊C4, C2×C8, D8, C22×C4, C2×D4, C2×D4, C24, Dic7, C28, C28, D14, C2×C14, C2×C14, C2×C14, C22⋊C8, D4⋊C4, C4⋊D4, C2×D8, C22×D4, C7⋊C8, D28, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×D4, C22×D7, C22×C14, C22×C14, C22⋊D8, C2×C7⋊C8, C4⋊Dic7, D14⋊C4, D4⋊D7, C2×D28, C2×C7⋊D4, C22×C28, D4×C14, D4×C14, C23×C14, C28.55D4, D4⋊Dic7, C287D4, C2×D4⋊D7, D4×C2×C14, (C2×C14)⋊8D8
Quotients: C1, C2, C22, D4, C23, D7, D8, C2×D4, D14, C22≀C2, C2×D8, C8⋊C22, C7⋊D4, C22×D7, C22⋊D8, D4⋊D7, C2×C7⋊D4, C2×D4⋊D7, D4.D14, C24⋊D7, (C2×C14)⋊8D8

Smallest permutation representation of (C2×C14)⋊8D8
On 112 points
Generators in S112
(1 87)(2 88)(3 89)(4 90)(5 91)(6 92)(7 93)(8 94)(9 95)(10 96)(11 97)(12 98)(13 85)(14 86)(15 112)(16 99)(17 100)(18 101)(19 102)(20 103)(21 104)(22 105)(23 106)(24 107)(25 108)(26 109)(27 110)(28 111)(29 52)(30 53)(31 54)(32 55)(33 56)(34 43)(35 44)(36 45)(37 46)(38 47)(39 48)(40 49)(41 50)(42 51)(57 82)(58 83)(59 84)(60 71)(61 72)(62 73)(63 74)(64 75)(65 76)(66 77)(67 78)(68 79)(69 80)(70 81)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 106 46 57 87 16 37 75)(2 105 47 70 88 15 38 74)(3 104 48 69 89 28 39 73)(4 103 49 68 90 27 40 72)(5 102 50 67 91 26 41 71)(6 101 51 66 92 25 42 84)(7 100 52 65 93 24 29 83)(8 99 53 64 94 23 30 82)(9 112 54 63 95 22 31 81)(10 111 55 62 96 21 32 80)(11 110 56 61 97 20 33 79)(12 109 43 60 98 19 34 78)(13 108 44 59 85 18 35 77)(14 107 45 58 86 17 36 76)
(1 75)(2 74)(3 73)(4 72)(5 71)(6 84)(7 83)(8 82)(9 81)(10 80)(11 79)(12 78)(13 77)(14 76)(15 47)(16 46)(17 45)(18 44)(19 43)(20 56)(21 55)(22 54)(23 53)(24 52)(25 51)(26 50)(27 49)(28 48)(29 100)(30 99)(31 112)(32 111)(33 110)(34 109)(35 108)(36 107)(37 106)(38 105)(39 104)(40 103)(41 102)(42 101)(57 87)(58 86)(59 85)(60 98)(61 97)(62 96)(63 95)(64 94)(65 93)(66 92)(67 91)(68 90)(69 89)(70 88)

G:=sub<Sym(112)| (1,87)(2,88)(3,89)(4,90)(5,91)(6,92)(7,93)(8,94)(9,95)(10,96)(11,97)(12,98)(13,85)(14,86)(15,112)(16,99)(17,100)(18,101)(19,102)(20,103)(21,104)(22,105)(23,106)(24,107)(25,108)(26,109)(27,110)(28,111)(29,52)(30,53)(31,54)(32,55)(33,56)(34,43)(35,44)(36,45)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(57,82)(58,83)(59,84)(60,71)(61,72)(62,73)(63,74)(64,75)(65,76)(66,77)(67,78)(68,79)(69,80)(70,81), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,106,46,57,87,16,37,75)(2,105,47,70,88,15,38,74)(3,104,48,69,89,28,39,73)(4,103,49,68,90,27,40,72)(5,102,50,67,91,26,41,71)(6,101,51,66,92,25,42,84)(7,100,52,65,93,24,29,83)(8,99,53,64,94,23,30,82)(9,112,54,63,95,22,31,81)(10,111,55,62,96,21,32,80)(11,110,56,61,97,20,33,79)(12,109,43,60,98,19,34,78)(13,108,44,59,85,18,35,77)(14,107,45,58,86,17,36,76), (1,75)(2,74)(3,73)(4,72)(5,71)(6,84)(7,83)(8,82)(9,81)(10,80)(11,79)(12,78)(13,77)(14,76)(15,47)(16,46)(17,45)(18,44)(19,43)(20,56)(21,55)(22,54)(23,53)(24,52)(25,51)(26,50)(27,49)(28,48)(29,100)(30,99)(31,112)(32,111)(33,110)(34,109)(35,108)(36,107)(37,106)(38,105)(39,104)(40,103)(41,102)(42,101)(57,87)(58,86)(59,85)(60,98)(61,97)(62,96)(63,95)(64,94)(65,93)(66,92)(67,91)(68,90)(69,89)(70,88)>;

G:=Group( (1,87)(2,88)(3,89)(4,90)(5,91)(6,92)(7,93)(8,94)(9,95)(10,96)(11,97)(12,98)(13,85)(14,86)(15,112)(16,99)(17,100)(18,101)(19,102)(20,103)(21,104)(22,105)(23,106)(24,107)(25,108)(26,109)(27,110)(28,111)(29,52)(30,53)(31,54)(32,55)(33,56)(34,43)(35,44)(36,45)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(57,82)(58,83)(59,84)(60,71)(61,72)(62,73)(63,74)(64,75)(65,76)(66,77)(67,78)(68,79)(69,80)(70,81), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,106,46,57,87,16,37,75)(2,105,47,70,88,15,38,74)(3,104,48,69,89,28,39,73)(4,103,49,68,90,27,40,72)(5,102,50,67,91,26,41,71)(6,101,51,66,92,25,42,84)(7,100,52,65,93,24,29,83)(8,99,53,64,94,23,30,82)(9,112,54,63,95,22,31,81)(10,111,55,62,96,21,32,80)(11,110,56,61,97,20,33,79)(12,109,43,60,98,19,34,78)(13,108,44,59,85,18,35,77)(14,107,45,58,86,17,36,76), (1,75)(2,74)(3,73)(4,72)(5,71)(6,84)(7,83)(8,82)(9,81)(10,80)(11,79)(12,78)(13,77)(14,76)(15,47)(16,46)(17,45)(18,44)(19,43)(20,56)(21,55)(22,54)(23,53)(24,52)(25,51)(26,50)(27,49)(28,48)(29,100)(30,99)(31,112)(32,111)(33,110)(34,109)(35,108)(36,107)(37,106)(38,105)(39,104)(40,103)(41,102)(42,101)(57,87)(58,86)(59,85)(60,98)(61,97)(62,96)(63,95)(64,94)(65,93)(66,92)(67,91)(68,90)(69,89)(70,88) );

G=PermutationGroup([[(1,87),(2,88),(3,89),(4,90),(5,91),(6,92),(7,93),(8,94),(9,95),(10,96),(11,97),(12,98),(13,85),(14,86),(15,112),(16,99),(17,100),(18,101),(19,102),(20,103),(21,104),(22,105),(23,106),(24,107),(25,108),(26,109),(27,110),(28,111),(29,52),(30,53),(31,54),(32,55),(33,56),(34,43),(35,44),(36,45),(37,46),(38,47),(39,48),(40,49),(41,50),(42,51),(57,82),(58,83),(59,84),(60,71),(61,72),(62,73),(63,74),(64,75),(65,76),(66,77),(67,78),(68,79),(69,80),(70,81)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,106,46,57,87,16,37,75),(2,105,47,70,88,15,38,74),(3,104,48,69,89,28,39,73),(4,103,49,68,90,27,40,72),(5,102,50,67,91,26,41,71),(6,101,51,66,92,25,42,84),(7,100,52,65,93,24,29,83),(8,99,53,64,94,23,30,82),(9,112,54,63,95,22,31,81),(10,111,55,62,96,21,32,80),(11,110,56,61,97,20,33,79),(12,109,43,60,98,19,34,78),(13,108,44,59,85,18,35,77),(14,107,45,58,86,17,36,76)], [(1,75),(2,74),(3,73),(4,72),(5,71),(6,84),(7,83),(8,82),(9,81),(10,80),(11,79),(12,78),(13,77),(14,76),(15,47),(16,46),(17,45),(18,44),(19,43),(20,56),(21,55),(22,54),(23,53),(24,52),(25,51),(26,50),(27,49),(28,48),(29,100),(30,99),(31,112),(32,111),(33,110),(34,109),(35,108),(36,107),(37,106),(38,105),(39,104),(40,103),(41,102),(42,101),(57,87),(58,86),(59,85),(60,98),(61,97),(62,96),(63,95),(64,94),(65,93),(66,92),(67,91),(68,90),(69,89),(70,88)]])

79 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J4A4B4C4D7A7B7C8A8B8C8D14A···14U14V···14AS28A···28L
order122222222224444777888814···1414···1428···28
size11112244445622456222282828282···24···44···4

79 irreducible representations

dim1111112222222222444
type+++++++++++++++
imageC1C2C2C2C2C2D4D4D4D7D8D14D14C7⋊D4C7⋊D4C7⋊D4C8⋊C22D4⋊D7D4.D14
kernel(C2×C14)⋊8D8C28.55D4D4⋊Dic7C287D4C2×D4⋊D7D4×C2×C14C2×C28C7×D4C22×C14C22×D4C2×C14C22×C4C2×D4C2×C4D4C23C14C22C2
# reps11212114134366246166

Matrix representation of (C2×C14)⋊8D8 in GL4(𝔽113) generated by

1000
011200
001120
000112
,
64000
08300
0010
0001
,
0100
112000
006246
00270
,
0100
1000
006246
002751
G:=sub<GL(4,GF(113))| [1,0,0,0,0,112,0,0,0,0,112,0,0,0,0,112],[64,0,0,0,0,83,0,0,0,0,1,0,0,0,0,1],[0,112,0,0,1,0,0,0,0,0,62,27,0,0,46,0],[0,1,0,0,1,0,0,0,0,0,62,27,0,0,46,51] >;

(C2×C14)⋊8D8 in GAP, Magma, Sage, TeX

(C_2\times C_{14})\rtimes_8D_8
% in TeX

G:=Group("(C2xC14):8D8");
// GroupNames label

G:=SmallGroup(448,751);
// by ID

G=gap.SmallGroup(448,751);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,253,254,1684,851,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^14=c^8=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a*b^7,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽