Extensions 1→N→G→Q→1 with N=D4.9D14 and Q=C2

Direct product G=N×Q with N=D4.9D14 and Q=C2
dρLabelID
C2×D4.9D14224C2xD4.9D14448,1276

Semidirect products G=N:Q with N=D4.9D14 and Q=C2
extensionφ:Q→Out NdρLabelID
D4.9D141C2 = M4(2)⋊D14φ: C2/C1C2 ⊆ Out D4.9D141124D4.9D14:1C2448,359
D4.9D142C2 = D4.9D28φ: C2/C1C2 ⊆ Out D4.9D141124-D4.9D14:2C2448,360
D4.9D143C2 = D4.3D28φ: C2/C1C2 ⊆ Out D4.9D141124D4.9D14:3C2448,675
D4.9D144C2 = M4(2).13D14φ: C2/C1C2 ⊆ Out D4.9D141128-D4.9D14:4C2448,734
D4.9D145C2 = 2+ 1+4.D7φ: C2/C1C2 ⊆ Out D4.9D141128-D4.9D14:5C2448,776
D4.9D146C2 = 2- 1+4.D7φ: C2/C1C2 ⊆ Out D4.9D141128-D4.9D14:6C2448,780
D4.9D147C2 = D811D14φ: C2/C1C2 ⊆ Out D4.9D141124D4.9D14:7C2448,1223
D4.9D148C2 = D8.10D14φ: C2/C1C2 ⊆ Out D4.9D142244-D4.9D14:8C2448,1224
D4.9D149C2 = SD16⋊D14φ: C2/C1C2 ⊆ Out D4.9D141128-D4.9D14:9C2448,1226
D4.9D1410C2 = D7×C8.C22φ: C2/C1C2 ⊆ Out D4.9D141128-D4.9D14:10C2448,1229
D4.9D1411C2 = D28.33C23φ: C2/C1C2 ⊆ Out D4.9D141128-D4.9D14:11C2448,1289
D4.9D1412C2 = D28.35C23φ: C2/C1C2 ⊆ Out D4.9D142248-D4.9D14:12C2448,1291
D4.9D1413C2 = C28.C24φ: trivial image1124D4.9D14:13C2448,1275

Non-split extensions G=N.Q with N=D4.9D14 and Q=C2
extensionφ:Q→Out NdρLabelID
D4.9D14.1C2 = D4.5D28φ: C2/C1C2 ⊆ Out D4.9D142244-D4.9D14.1C2448,677
D4.9D14.2C2 = M4(2).16D14φ: C2/C1C2 ⊆ Out D4.9D142248-D4.9D14.2C2448,738

׿
×
𝔽