Copied to
clipboard

G = D4.9D14order 224 = 25·7

4th non-split extension by D4 of D14 acting via D14/C14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.9D14, C28.50D4, Q8.9D14, C28.19C23, Dic14.12C22, D4.D76C2, C4○D4.2D7, C7⋊Q166C2, C7⋊C8.4C22, (C2×C4).23D14, (C2×C14).10D4, C14.61(C2×D4), C75(C8.C22), C4.25(C7⋊D4), C4.Dic710C2, (C7×D4).9C22, C4.19(C22×D7), (C2×Dic14)⋊11C2, (C7×Q8).9C22, (C2×C28).44C22, C22.6(C7⋊D4), (C7×C4○D4).3C2, C2.25(C2×C7⋊D4), SmallGroup(224,146)

Series: Derived Chief Lower central Upper central

C1C28 — D4.9D14
C1C7C14C28Dic14C2×Dic14 — D4.9D14
C7C14C28 — D4.9D14
C1C2C2×C4C4○D4

Generators and relations for D4.9D14
 G = < a,b,c,d | a4=b2=c14=1, d2=a2, bab=dad-1=a-1, ac=ca, cbc-1=a2b, dbd-1=a-1b, dcd-1=c-1 >

Subgroups: 198 in 60 conjugacy classes, 29 normal (21 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C14, C14, M4(2), SD16, Q16, C2×Q8, C4○D4, Dic7, C28, C28, C2×C14, C2×C14, C8.C22, C7⋊C8, Dic14, Dic14, C2×Dic7, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C4.Dic7, D4.D7, C7⋊Q16, C2×Dic14, C7×C4○D4, D4.9D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, D14, C8.C22, C7⋊D4, C22×D7, C2×C7⋊D4, D4.9D14

Smallest permutation representation of D4.9D14
On 112 points
Generators in S112
(1 98 108 17)(2 85 109 18)(3 86 110 19)(4 87 111 20)(5 88 112 21)(6 89 99 22)(7 90 100 23)(8 91 101 24)(9 92 102 25)(10 93 103 26)(11 94 104 27)(12 95 105 28)(13 96 106 15)(14 97 107 16)(29 73 47 66)(30 74 48 67)(31 75 49 68)(32 76 50 69)(33 77 51 70)(34 78 52 57)(35 79 53 58)(36 80 54 59)(37 81 55 60)(38 82 56 61)(39 83 43 62)(40 84 44 63)(41 71 45 64)(42 72 46 65)
(1 17)(2 85)(3 19)(4 87)(5 21)(6 89)(7 23)(8 91)(9 25)(10 93)(11 27)(12 95)(13 15)(14 97)(16 107)(18 109)(20 111)(22 99)(24 101)(26 103)(28 105)(29 47)(31 49)(33 51)(35 53)(37 55)(39 43)(41 45)(57 78)(59 80)(61 82)(63 84)(65 72)(67 74)(69 76)(86 110)(88 112)(90 100)(92 102)(94 104)(96 106)(98 108)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 66 108 73)(2 65 109 72)(3 64 110 71)(4 63 111 84)(5 62 112 83)(6 61 99 82)(7 60 100 81)(8 59 101 80)(9 58 102 79)(10 57 103 78)(11 70 104 77)(12 69 105 76)(13 68 106 75)(14 67 107 74)(15 31 96 49)(16 30 97 48)(17 29 98 47)(18 42 85 46)(19 41 86 45)(20 40 87 44)(21 39 88 43)(22 38 89 56)(23 37 90 55)(24 36 91 54)(25 35 92 53)(26 34 93 52)(27 33 94 51)(28 32 95 50)

G:=sub<Sym(112)| (1,98,108,17)(2,85,109,18)(3,86,110,19)(4,87,111,20)(5,88,112,21)(6,89,99,22)(7,90,100,23)(8,91,101,24)(9,92,102,25)(10,93,103,26)(11,94,104,27)(12,95,105,28)(13,96,106,15)(14,97,107,16)(29,73,47,66)(30,74,48,67)(31,75,49,68)(32,76,50,69)(33,77,51,70)(34,78,52,57)(35,79,53,58)(36,80,54,59)(37,81,55,60)(38,82,56,61)(39,83,43,62)(40,84,44,63)(41,71,45,64)(42,72,46,65), (1,17)(2,85)(3,19)(4,87)(5,21)(6,89)(7,23)(8,91)(9,25)(10,93)(11,27)(12,95)(13,15)(14,97)(16,107)(18,109)(20,111)(22,99)(24,101)(26,103)(28,105)(29,47)(31,49)(33,51)(35,53)(37,55)(39,43)(41,45)(57,78)(59,80)(61,82)(63,84)(65,72)(67,74)(69,76)(86,110)(88,112)(90,100)(92,102)(94,104)(96,106)(98,108), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,66,108,73)(2,65,109,72)(3,64,110,71)(4,63,111,84)(5,62,112,83)(6,61,99,82)(7,60,100,81)(8,59,101,80)(9,58,102,79)(10,57,103,78)(11,70,104,77)(12,69,105,76)(13,68,106,75)(14,67,107,74)(15,31,96,49)(16,30,97,48)(17,29,98,47)(18,42,85,46)(19,41,86,45)(20,40,87,44)(21,39,88,43)(22,38,89,56)(23,37,90,55)(24,36,91,54)(25,35,92,53)(26,34,93,52)(27,33,94,51)(28,32,95,50)>;

G:=Group( (1,98,108,17)(2,85,109,18)(3,86,110,19)(4,87,111,20)(5,88,112,21)(6,89,99,22)(7,90,100,23)(8,91,101,24)(9,92,102,25)(10,93,103,26)(11,94,104,27)(12,95,105,28)(13,96,106,15)(14,97,107,16)(29,73,47,66)(30,74,48,67)(31,75,49,68)(32,76,50,69)(33,77,51,70)(34,78,52,57)(35,79,53,58)(36,80,54,59)(37,81,55,60)(38,82,56,61)(39,83,43,62)(40,84,44,63)(41,71,45,64)(42,72,46,65), (1,17)(2,85)(3,19)(4,87)(5,21)(6,89)(7,23)(8,91)(9,25)(10,93)(11,27)(12,95)(13,15)(14,97)(16,107)(18,109)(20,111)(22,99)(24,101)(26,103)(28,105)(29,47)(31,49)(33,51)(35,53)(37,55)(39,43)(41,45)(57,78)(59,80)(61,82)(63,84)(65,72)(67,74)(69,76)(86,110)(88,112)(90,100)(92,102)(94,104)(96,106)(98,108), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,66,108,73)(2,65,109,72)(3,64,110,71)(4,63,111,84)(5,62,112,83)(6,61,99,82)(7,60,100,81)(8,59,101,80)(9,58,102,79)(10,57,103,78)(11,70,104,77)(12,69,105,76)(13,68,106,75)(14,67,107,74)(15,31,96,49)(16,30,97,48)(17,29,98,47)(18,42,85,46)(19,41,86,45)(20,40,87,44)(21,39,88,43)(22,38,89,56)(23,37,90,55)(24,36,91,54)(25,35,92,53)(26,34,93,52)(27,33,94,51)(28,32,95,50) );

G=PermutationGroup([[(1,98,108,17),(2,85,109,18),(3,86,110,19),(4,87,111,20),(5,88,112,21),(6,89,99,22),(7,90,100,23),(8,91,101,24),(9,92,102,25),(10,93,103,26),(11,94,104,27),(12,95,105,28),(13,96,106,15),(14,97,107,16),(29,73,47,66),(30,74,48,67),(31,75,49,68),(32,76,50,69),(33,77,51,70),(34,78,52,57),(35,79,53,58),(36,80,54,59),(37,81,55,60),(38,82,56,61),(39,83,43,62),(40,84,44,63),(41,71,45,64),(42,72,46,65)], [(1,17),(2,85),(3,19),(4,87),(5,21),(6,89),(7,23),(8,91),(9,25),(10,93),(11,27),(12,95),(13,15),(14,97),(16,107),(18,109),(20,111),(22,99),(24,101),(26,103),(28,105),(29,47),(31,49),(33,51),(35,53),(37,55),(39,43),(41,45),(57,78),(59,80),(61,82),(63,84),(65,72),(67,74),(69,76),(86,110),(88,112),(90,100),(92,102),(94,104),(96,106),(98,108)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,66,108,73),(2,65,109,72),(3,64,110,71),(4,63,111,84),(5,62,112,83),(6,61,99,82),(7,60,100,81),(8,59,101,80),(9,58,102,79),(10,57,103,78),(11,70,104,77),(12,69,105,76),(13,68,106,75),(14,67,107,74),(15,31,96,49),(16,30,97,48),(17,29,98,47),(18,42,85,46),(19,41,86,45),(20,40,87,44),(21,39,88,43),(22,38,89,56),(23,37,90,55),(24,36,91,54),(25,35,92,53),(26,34,93,52),(27,33,94,51),(28,32,95,50)]])

D4.9D14 is a maximal subgroup of
M4(2)⋊D14  D4.9D28  D4.3D28  D4.5D28  M4(2).13D14  M4(2).16D14  2+ 1+4.D7  2- 1+4.D7  D811D14  D8.10D14  SD16⋊D14  D7×C8.C22  C28.C24  D28.33C23  D28.35C23
D4.9D14 is a maximal quotient of
C28.(C2×Q8)  C4⋊C4.233D14  (C2×C4).47D28  C28.50D8  C42.51D14  D4.2D28  C28.48SD16  C42.59D14  C287Q16  (C2×C14).D8  Dic1417D4  C7⋊C85D4  C22⋊Q8.D7  Dic14.37D4  C7⋊C8.6D4  C42.61D14  C42.62D14  C42.65D14  Dic14.4Q8  C42.68D14  C42.71D14  C4○D4⋊Dic7  (C7×D4).32D4

41 conjugacy classes

class 1 2A2B2C4A4B4C4D4E7A7B7C8A8B14A14B14C14D···14L28A···28F28G···28O
order1222444447778814141414···1428···2828···28
size1124224282822228282224···42···24···4

41 irreducible representations

dim1111112222222244
type++++++++++++--
imageC1C2C2C2C2C2D4D4D7D14D14D14C7⋊D4C7⋊D4C8.C22D4.9D14
kernelD4.9D14C4.Dic7D4.D7C7⋊Q16C2×Dic14C7×C4○D4C28C2×C14C4○D4C2×C4D4Q8C4C22C7C1
# reps1122111133336616

Matrix representation of D4.9D14 in GL4(𝔽113) generated by

0010
0001
112000
011200
,
0010
0001
1000
0100
,
0010094
001919
131900
949400
,
92929292
56215621
92922121
56215792
G:=sub<GL(4,GF(113))| [0,0,112,0,0,0,0,112,1,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,1,1,0,0,0,0,1,0,0],[0,0,13,94,0,0,19,94,100,19,0,0,94,19,0,0],[92,56,92,56,92,21,92,21,92,56,21,57,92,21,21,92] >;

D4.9D14 in GAP, Magma, Sage, TeX

D_4._9D_{14}
% in TeX

G:=Group("D4.9D14");
// GroupNames label

G:=SmallGroup(224,146);
// by ID

G=gap.SmallGroup(224,146);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,96,218,188,579,159,69,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^14=1,d^2=a^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,c*b*c^-1=a^2*b,d*b*d^-1=a^-1*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽