Copied to
clipboard

G = D811D14order 448 = 26·7

5th semidirect product of D8 and D14 acting via D14/C14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D811D14, Q1610D14, D28.46D4, SD1615D14, C28.17C24, C56.43C23, Dic14.46D4, D28.12C23, Dic14.11C23, C4○D85D7, C4○D42D14, (C2×C8)⋊14D14, C7⋊D4.2D4, C7⋊C8.8C23, D8⋊D76C2, D4⋊D74C22, (D7×SD16)⋊6C2, C4.144(D4×D7), C73(D4○SD16), Q8⋊D73C22, D48D146C2, D4⋊D148C2, (Q8×D7)⋊2C22, C22.9(D4×D7), (C2×C56)⋊17C22, Q16⋊D76C2, D14.30(C2×D4), C28.350(C2×D4), (C7×D8)⋊16C22, (C8×D7)⋊10C22, D4.D73C22, C7⋊Q162C22, (D4×D7).2C22, C8.17(C22×D7), C4.17(C23×D7), SD163D76C2, D4.9D147C2, D42D72C22, C56⋊C221C22, C8⋊D716C22, Dic7.35(C2×D4), (C7×Q16)⋊14C22, (C7×D4).11C23, (C4×D7).10C23, D4.11(C22×D7), D4.10D145C2, D28.2C410C2, Q8.11(C22×D7), (C7×Q8).11C23, (C2×C28).534C23, (C7×SD16)⋊16C22, C4○D28.55C22, C14.118(C22×D4), C4.Dic731C22, Q82D7.2C22, (C2×Dic14)⋊38C22, (C2×D28).181C22, C2.91(C2×D4×D7), (C7×C4○D8)⋊7C2, (C2×C56⋊C2)⋊27C2, (C2×C14).14(C2×D4), (C7×C4○D4)⋊4C22, (C2×C4).233(C22×D7), SmallGroup(448,1223)

Series: Derived Chief Lower central Upper central

C1C28 — D811D14
C1C7C14C28C4×D7C4○D28D48D14 — D811D14
C7C14C28 — D811D14
C1C2C2×C4C4○D8

Generators and relations for D811D14
 G = < a,b,c,d | a8=b2=c14=d2=1, bab=a-1, ac=ca, dad=a3, cbc-1=a4b, dbd=a6b, dcd=c-1 >

Subgroups: 1364 in 258 conjugacy classes, 99 normal (53 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, D7, C14, C14, C2×C8, C2×C8, M4(2), D8, D8, SD16, SD16, Q16, Q16, C2×D4, C2×Q8, C4○D4, C4○D4, Dic7, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C8○D4, C2×SD16, C4○D8, C4○D8, C8⋊C22, C8.C22, 2+ 1+4, 2- 1+4, C7⋊C8, C56, Dic14, Dic14, Dic14, C4×D7, C4×D7, D28, D28, D28, C2×Dic7, C7⋊D4, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C22×D7, D4○SD16, C8×D7, C8⋊D7, C56⋊C2, C4.Dic7, D4⋊D7, D4.D7, Q8⋊D7, C7⋊Q16, C2×C56, C7×D8, C7×SD16, C7×Q16, C2×Dic14, C2×Dic14, C2×D28, C2×D28, C4○D28, C4○D28, D4×D7, D4×D7, D42D7, D42D7, Q8×D7, Q82D7, C7×C4○D4, D28.2C4, C2×C56⋊C2, D8⋊D7, D7×SD16, SD163D7, Q16⋊D7, D4⋊D14, D4.9D14, C7×C4○D8, D48D14, D4.10D14, D811D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C24, D14, C22×D4, C22×D7, D4○SD16, D4×D7, C23×D7, C2×D4×D7, D811D14

Smallest permutation representation of D811D14
On 112 points
Generators in S112
(1 20 33 43 65 100 94 76)(2 21 34 44 66 101 95 77)(3 22 35 45 67 102 96 78)(4 23 36 46 68 103 97 79)(5 24 37 47 69 104 98 80)(6 25 38 48 70 105 85 81)(7 26 39 49 57 106 86 82)(8 27 40 50 58 107 87 83)(9 28 41 51 59 108 88 84)(10 15 42 52 60 109 89 71)(11 16 29 53 61 110 90 72)(12 17 30 54 62 111 91 73)(13 18 31 55 63 112 92 74)(14 19 32 56 64 99 93 75)
(1 76)(2 44)(3 78)(4 46)(5 80)(6 48)(7 82)(8 50)(9 84)(10 52)(11 72)(12 54)(13 74)(14 56)(15 42)(16 90)(17 30)(18 92)(19 32)(20 94)(21 34)(22 96)(23 36)(24 98)(25 38)(26 86)(27 40)(28 88)(29 110)(31 112)(33 100)(35 102)(37 104)(39 106)(41 108)(43 65)(45 67)(47 69)(49 57)(51 59)(53 61)(55 63)(58 83)(60 71)(62 73)(64 75)(66 77)(68 79)(70 81)(85 105)(87 107)(89 109)(91 111)(93 99)(95 101)(97 103)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 39)(2 38)(3 37)(4 36)(5 35)(6 34)(7 33)(8 32)(9 31)(10 30)(11 29)(12 42)(13 41)(14 40)(15 111)(16 110)(17 109)(18 108)(19 107)(20 106)(21 105)(22 104)(23 103)(24 102)(25 101)(26 100)(27 99)(28 112)(43 49)(44 48)(45 47)(50 56)(51 55)(52 54)(57 94)(58 93)(59 92)(60 91)(61 90)(62 89)(63 88)(64 87)(65 86)(66 85)(67 98)(68 97)(69 96)(70 95)(71 73)(74 84)(75 83)(76 82)(77 81)(78 80)

G:=sub<Sym(112)| (1,20,33,43,65,100,94,76)(2,21,34,44,66,101,95,77)(3,22,35,45,67,102,96,78)(4,23,36,46,68,103,97,79)(5,24,37,47,69,104,98,80)(6,25,38,48,70,105,85,81)(7,26,39,49,57,106,86,82)(8,27,40,50,58,107,87,83)(9,28,41,51,59,108,88,84)(10,15,42,52,60,109,89,71)(11,16,29,53,61,110,90,72)(12,17,30,54,62,111,91,73)(13,18,31,55,63,112,92,74)(14,19,32,56,64,99,93,75), (1,76)(2,44)(3,78)(4,46)(5,80)(6,48)(7,82)(8,50)(9,84)(10,52)(11,72)(12,54)(13,74)(14,56)(15,42)(16,90)(17,30)(18,92)(19,32)(20,94)(21,34)(22,96)(23,36)(24,98)(25,38)(26,86)(27,40)(28,88)(29,110)(31,112)(33,100)(35,102)(37,104)(39,106)(41,108)(43,65)(45,67)(47,69)(49,57)(51,59)(53,61)(55,63)(58,83)(60,71)(62,73)(64,75)(66,77)(68,79)(70,81)(85,105)(87,107)(89,109)(91,111)(93,99)(95,101)(97,103), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,39)(2,38)(3,37)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,42)(13,41)(14,40)(15,111)(16,110)(17,109)(18,108)(19,107)(20,106)(21,105)(22,104)(23,103)(24,102)(25,101)(26,100)(27,99)(28,112)(43,49)(44,48)(45,47)(50,56)(51,55)(52,54)(57,94)(58,93)(59,92)(60,91)(61,90)(62,89)(63,88)(64,87)(65,86)(66,85)(67,98)(68,97)(69,96)(70,95)(71,73)(74,84)(75,83)(76,82)(77,81)(78,80)>;

G:=Group( (1,20,33,43,65,100,94,76)(2,21,34,44,66,101,95,77)(3,22,35,45,67,102,96,78)(4,23,36,46,68,103,97,79)(5,24,37,47,69,104,98,80)(6,25,38,48,70,105,85,81)(7,26,39,49,57,106,86,82)(8,27,40,50,58,107,87,83)(9,28,41,51,59,108,88,84)(10,15,42,52,60,109,89,71)(11,16,29,53,61,110,90,72)(12,17,30,54,62,111,91,73)(13,18,31,55,63,112,92,74)(14,19,32,56,64,99,93,75), (1,76)(2,44)(3,78)(4,46)(5,80)(6,48)(7,82)(8,50)(9,84)(10,52)(11,72)(12,54)(13,74)(14,56)(15,42)(16,90)(17,30)(18,92)(19,32)(20,94)(21,34)(22,96)(23,36)(24,98)(25,38)(26,86)(27,40)(28,88)(29,110)(31,112)(33,100)(35,102)(37,104)(39,106)(41,108)(43,65)(45,67)(47,69)(49,57)(51,59)(53,61)(55,63)(58,83)(60,71)(62,73)(64,75)(66,77)(68,79)(70,81)(85,105)(87,107)(89,109)(91,111)(93,99)(95,101)(97,103), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,39)(2,38)(3,37)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,42)(13,41)(14,40)(15,111)(16,110)(17,109)(18,108)(19,107)(20,106)(21,105)(22,104)(23,103)(24,102)(25,101)(26,100)(27,99)(28,112)(43,49)(44,48)(45,47)(50,56)(51,55)(52,54)(57,94)(58,93)(59,92)(60,91)(61,90)(62,89)(63,88)(64,87)(65,86)(66,85)(67,98)(68,97)(69,96)(70,95)(71,73)(74,84)(75,83)(76,82)(77,81)(78,80) );

G=PermutationGroup([[(1,20,33,43,65,100,94,76),(2,21,34,44,66,101,95,77),(3,22,35,45,67,102,96,78),(4,23,36,46,68,103,97,79),(5,24,37,47,69,104,98,80),(6,25,38,48,70,105,85,81),(7,26,39,49,57,106,86,82),(8,27,40,50,58,107,87,83),(9,28,41,51,59,108,88,84),(10,15,42,52,60,109,89,71),(11,16,29,53,61,110,90,72),(12,17,30,54,62,111,91,73),(13,18,31,55,63,112,92,74),(14,19,32,56,64,99,93,75)], [(1,76),(2,44),(3,78),(4,46),(5,80),(6,48),(7,82),(8,50),(9,84),(10,52),(11,72),(12,54),(13,74),(14,56),(15,42),(16,90),(17,30),(18,92),(19,32),(20,94),(21,34),(22,96),(23,36),(24,98),(25,38),(26,86),(27,40),(28,88),(29,110),(31,112),(33,100),(35,102),(37,104),(39,106),(41,108),(43,65),(45,67),(47,69),(49,57),(51,59),(53,61),(55,63),(58,83),(60,71),(62,73),(64,75),(66,77),(68,79),(70,81),(85,105),(87,107),(89,109),(91,111),(93,99),(95,101),(97,103)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,39),(2,38),(3,37),(4,36),(5,35),(6,34),(7,33),(8,32),(9,31),(10,30),(11,29),(12,42),(13,41),(14,40),(15,111),(16,110),(17,109),(18,108),(19,107),(20,106),(21,105),(22,104),(23,103),(24,102),(25,101),(26,100),(27,99),(28,112),(43,49),(44,48),(45,47),(50,56),(51,55),(52,54),(57,94),(58,93),(59,92),(60,91),(61,90),(62,89),(63,88),(64,87),(65,86),(66,85),(67,98),(68,97),(69,96),(70,95),(71,73),(74,84),(75,83),(76,82),(77,81),(78,80)]])

64 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H7A7B7C8A8B8C8D8E14A14B14C14D14E14F14G···14L28A···28F28G28H28I28J···28O56A···56L
order122222222444444447778888814141414141414···1428···2828282828···2856···56
size112441414282822441414282822222428282224448···82···24448···84···4

64 irreducible representations

dim1111111111112222222224444
type+++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D4D4D7D14D14D14D14D14D4○SD16D4×D7D4×D7D811D14
kernelD811D14D28.2C4C2×C56⋊C2D8⋊D7D7×SD16SD163D7Q16⋊D7D4⋊D14D4.9D14C7×C4○D8D48D14D4.10D14Dic14D28C7⋊D4C4○D8C2×C8D8SD16Q16C4○D4C7C4C22C1
# reps11122221111111233363623312

Matrix representation of D811D14 in GL4(𝔽113) generated by

76713742
42377176
76717671
42374237
,
76713742
42377176
37423742
71767176
,
004109
00481
109400
1093200
,
003333
0010480
333300
1048000
G:=sub<GL(4,GF(113))| [76,42,76,42,71,37,71,37,37,71,76,42,42,76,71,37],[76,42,37,71,71,37,42,76,37,71,37,71,42,76,42,76],[0,0,109,109,0,0,4,32,4,4,0,0,109,81,0,0],[0,0,33,104,0,0,33,80,33,104,0,0,33,80,0,0] >;

D811D14 in GAP, Magma, Sage, TeX

D_8\rtimes_{11}D_{14}
% in TeX

G:=Group("D8:11D14");
// GroupNames label

G:=SmallGroup(448,1223);
// by ID

G=gap.SmallGroup(448,1223);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,477,387,570,185,136,438,235,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^14=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^3,c*b*c^-1=a^4*b,d*b*d=a^6*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽