extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C8).1Dic7 = C28.15C42 | φ: Dic7/C7 → C4 ⊆ Aut C2×C8 | 112 | 4 | (C2xC8).1Dic7 | 448,23 |
(C2×C8).2Dic7 = C56.D4 | φ: Dic7/C7 → C4 ⊆ Aut C2×C8 | 112 | 4 | (C2xC8).2Dic7 | 448,110 |
(C2×C8).3Dic7 = C28.21C42 | φ: Dic7/C7 → C4 ⊆ Aut C2×C8 | 112 | 4 | (C2xC8).3Dic7 | 448,117 |
(C2×C8).4Dic7 = C42.279D14 | φ: Dic7/C14 → C2 ⊆ Aut C2×C8 | 448 | | (C2xC8).4Dic7 | 448,11 |
(C2×C8).5Dic7 = C28⋊C16 | φ: Dic7/C14 → C2 ⊆ Aut C2×C8 | 448 | | (C2xC8).5Dic7 | 448,19 |
(C2×C8).6Dic7 = C56.91D4 | φ: Dic7/C14 → C2 ⊆ Aut C2×C8 | 224 | | (C2xC8).6Dic7 | 448,106 |
(C2×C8).7Dic7 = C28.10C42 | φ: Dic7/C14 → C2 ⊆ Aut C2×C8 | 224 | | (C2xC8).7Dic7 | 448,109 |
(C2×C8).8Dic7 = C56⋊1C8 | φ: Dic7/C14 → C2 ⊆ Aut C2×C8 | 448 | | (C2xC8).8Dic7 | 448,15 |
(C2×C8).9Dic7 = C56.16Q8 | φ: Dic7/C14 → C2 ⊆ Aut C2×C8 | 112 | 2 | (C2xC8).9Dic7 | 448,20 |
(C2×C8).10Dic7 = C56⋊2C8 | φ: Dic7/C14 → C2 ⊆ Aut C2×C8 | 448 | | (C2xC8).10Dic7 | 448,14 |
(C2×C8).11Dic7 = C2×C56.C4 | φ: Dic7/C14 → C2 ⊆ Aut C2×C8 | 224 | | (C2xC8).11Dic7 | 448,641 |
(C2×C8).12Dic7 = C56⋊C8 | φ: Dic7/C14 → C2 ⊆ Aut C2×C8 | 448 | | (C2xC8).12Dic7 | 448,12 |
(C2×C8).13Dic7 = C56.C8 | φ: Dic7/C14 → C2 ⊆ Aut C2×C8 | 448 | | (C2xC8).13Dic7 | 448,18 |
(C2×C8).14Dic7 = C7⋊M6(2) | φ: Dic7/C14 → C2 ⊆ Aut C2×C8 | 224 | 2 | (C2xC8).14Dic7 | 448,56 |
(C2×C8).15Dic7 = C2×C28.C8 | φ: Dic7/C14 → C2 ⊆ Aut C2×C8 | 224 | | (C2xC8).15Dic7 | 448,631 |
(C2×C8).16Dic7 = C8×C7⋊C8 | central extension (φ=1) | 448 | | (C2xC8).16Dic7 | 448,10 |
(C2×C8).17Dic7 = C4×C7⋊C16 | central extension (φ=1) | 448 | | (C2xC8).17Dic7 | 448,17 |
(C2×C8).18Dic7 = C2×C7⋊C32 | central extension (φ=1) | 448 | | (C2xC8).18Dic7 | 448,55 |
(C2×C8).19Dic7 = C22×C7⋊C16 | central extension (φ=1) | 448 | | (C2xC8).19Dic7 | 448,630 |