Copied to
clipboard

G = C56.16Q8order 448 = 26·7

6th non-split extension by C56 of Q8 acting via Q8/C4=C2

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C56.1C8, C8.29D28, C56.65D4, C56.16Q8, C8.14Dic14, C42.9Dic7, C8.1(C7⋊C8), (C4×C8).11D7, C14.4(C4⋊C8), C71(C8.C8), C28.37(C2×C8), (C4×C28).14C4, (C2×C56).18C4, (C4×C56).13C2, C28.39(C4⋊C4), (C2×C8).9Dic7, (C2×C8).321D14, C2.5(C28⋊C8), C28.C8.5C2, C4.19(C4⋊Dic7), (C2×C56).397C22, (C2×C14).19M4(2), C22.2(C4.Dic7), C4.8(C2×C7⋊C8), (C2×C28).301(C2×C4), (C2×C4).69(C2×Dic7), SmallGroup(448,20)

Series: Derived Chief Lower central Upper central

C1C28 — C56.16Q8
C1C7C14C28C56C2×C56C28.C8 — C56.16Q8
C7C14C28 — C56.16Q8
C1C8C2×C8C4×C8

Generators and relations for C56.16Q8
 G = < a,b,c | a56=1, b4=a28, c2=a21b2, ab=ba, cac-1=a13, cbc-1=b3 >

2C2
2C4
2C4
2C14
2C2×C4
2C28
2C28
14C16
14C16
2C2×C28
7M5(2)
7M5(2)
2C7⋊C16
2C7⋊C16
7C8.C8

Smallest permutation representation of C56.16Q8
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 50 43 36 29 22 15 8)(2 51 44 37 30 23 16 9)(3 52 45 38 31 24 17 10)(4 53 46 39 32 25 18 11)(5 54 47 40 33 26 19 12)(6 55 48 41 34 27 20 13)(7 56 49 42 35 28 21 14)(57 64 71 78 85 92 99 106)(58 65 72 79 86 93 100 107)(59 66 73 80 87 94 101 108)(60 67 74 81 88 95 102 109)(61 68 75 82 89 96 103 110)(62 69 76 83 90 97 104 111)(63 70 77 84 91 98 105 112)
(1 64 8 99 15 78 22 57 29 92 36 71 43 106 50 85)(2 77 9 112 16 91 23 70 30 105 37 84 44 63 51 98)(3 90 10 69 17 104 24 83 31 62 38 97 45 76 52 111)(4 103 11 82 18 61 25 96 32 75 39 110 46 89 53 68)(5 60 12 95 19 74 26 109 33 88 40 67 47 102 54 81)(6 73 13 108 20 87 27 66 34 101 41 80 48 59 55 94)(7 86 14 65 21 100 28 79 35 58 42 93 49 72 56 107)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,50,43,36,29,22,15,8)(2,51,44,37,30,23,16,9)(3,52,45,38,31,24,17,10)(4,53,46,39,32,25,18,11)(5,54,47,40,33,26,19,12)(6,55,48,41,34,27,20,13)(7,56,49,42,35,28,21,14)(57,64,71,78,85,92,99,106)(58,65,72,79,86,93,100,107)(59,66,73,80,87,94,101,108)(60,67,74,81,88,95,102,109)(61,68,75,82,89,96,103,110)(62,69,76,83,90,97,104,111)(63,70,77,84,91,98,105,112), (1,64,8,99,15,78,22,57,29,92,36,71,43,106,50,85)(2,77,9,112,16,91,23,70,30,105,37,84,44,63,51,98)(3,90,10,69,17,104,24,83,31,62,38,97,45,76,52,111)(4,103,11,82,18,61,25,96,32,75,39,110,46,89,53,68)(5,60,12,95,19,74,26,109,33,88,40,67,47,102,54,81)(6,73,13,108,20,87,27,66,34,101,41,80,48,59,55,94)(7,86,14,65,21,100,28,79,35,58,42,93,49,72,56,107)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,50,43,36,29,22,15,8)(2,51,44,37,30,23,16,9)(3,52,45,38,31,24,17,10)(4,53,46,39,32,25,18,11)(5,54,47,40,33,26,19,12)(6,55,48,41,34,27,20,13)(7,56,49,42,35,28,21,14)(57,64,71,78,85,92,99,106)(58,65,72,79,86,93,100,107)(59,66,73,80,87,94,101,108)(60,67,74,81,88,95,102,109)(61,68,75,82,89,96,103,110)(62,69,76,83,90,97,104,111)(63,70,77,84,91,98,105,112), (1,64,8,99,15,78,22,57,29,92,36,71,43,106,50,85)(2,77,9,112,16,91,23,70,30,105,37,84,44,63,51,98)(3,90,10,69,17,104,24,83,31,62,38,97,45,76,52,111)(4,103,11,82,18,61,25,96,32,75,39,110,46,89,53,68)(5,60,12,95,19,74,26,109,33,88,40,67,47,102,54,81)(6,73,13,108,20,87,27,66,34,101,41,80,48,59,55,94)(7,86,14,65,21,100,28,79,35,58,42,93,49,72,56,107) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,50,43,36,29,22,15,8),(2,51,44,37,30,23,16,9),(3,52,45,38,31,24,17,10),(4,53,46,39,32,25,18,11),(5,54,47,40,33,26,19,12),(6,55,48,41,34,27,20,13),(7,56,49,42,35,28,21,14),(57,64,71,78,85,92,99,106),(58,65,72,79,86,93,100,107),(59,66,73,80,87,94,101,108),(60,67,74,81,88,95,102,109),(61,68,75,82,89,96,103,110),(62,69,76,83,90,97,104,111),(63,70,77,84,91,98,105,112)], [(1,64,8,99,15,78,22,57,29,92,36,71,43,106,50,85),(2,77,9,112,16,91,23,70,30,105,37,84,44,63,51,98),(3,90,10,69,17,104,24,83,31,62,38,97,45,76,52,111),(4,103,11,82,18,61,25,96,32,75,39,110,46,89,53,68),(5,60,12,95,19,74,26,109,33,88,40,67,47,102,54,81),(6,73,13,108,20,87,27,66,34,101,41,80,48,59,55,94),(7,86,14,65,21,100,28,79,35,58,42,93,49,72,56,107)]])

124 conjugacy classes

class 1 2A2B4A4B4C···4G7A7B7C8A8B8C8D8E···8J14A···14I16A···16H28A···28AJ56A···56AV
order122444···477788888···814···1416···1628···2856···56
size112112···222211112···22···228···282···22···2

124 irreducible representations

dim1111112222222222222
type++++-+--+-+
imageC1C2C2C4C4C8D4Q8D7M4(2)Dic7Dic7D14C7⋊C8Dic14D28C8.C8C4.Dic7C56.16Q8
kernelC56.16Q8C28.C8C4×C56C4×C28C2×C56C56C56C56C4×C8C2×C14C42C2×C8C2×C8C8C8C8C7C22C1
# reps1212281132333126681248

Matrix representation of C56.16Q8 in GL2(𝔽113) generated by

510
0100
,
950
044
,
01
690
G:=sub<GL(2,GF(113))| [51,0,0,100],[95,0,0,44],[0,69,1,0] >;

C56.16Q8 in GAP, Magma, Sage, TeX

C_{56}._{16}Q_8
% in TeX

G:=Group("C56.16Q8");
// GroupNames label

G:=SmallGroup(448,20);
// by ID

G=gap.SmallGroup(448,20);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,28,141,64,100,1123,136,102,18822]);
// Polycyclic

G:=Group<a,b,c|a^56=1,b^4=a^28,c^2=a^21*b^2,a*b=b*a,c*a*c^-1=a^13,c*b*c^-1=b^3>;
// generators/relations

Export

Subgroup lattice of C56.16Q8 in TeX

׿
×
𝔽