metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C56.48D4, C28.25M4(2), C23.(C7⋊C8), (C2×C56).2C4, (C2×C28).1C8, C7⋊2(C23.C8), (C2×C8).2Dic7, (C2×C8).153D14, C8.33(C7⋊D4), (C22×C28).7C4, (C22×C14).2C8, C28.C8⋊11C2, (C2×M4(2)).4D7, C4.7(C4.Dic7), (C22×C4).4Dic7, C14.18(C22⋊C8), C28.93(C22⋊C4), (C2×C56).222C22, (C14×M4(2)).4C2, C4.26(C23.D7), C2.7(C28.55D4), (C2×C4).(C7⋊C8), C22.4(C2×C7⋊C8), (C2×C14).32(C2×C8), (C2×C28).303(C2×C4), (C2×C4).75(C2×Dic7), SmallGroup(448,110)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C56.D4
G = < a,b,c | a56=1, b4=a42, c2=a49, bab-1=a13, cac-1=a41, cbc-1=a7b3 >
Subgroups: 132 in 58 conjugacy classes, 31 normal (25 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, C23, C14, C14, C16, C2×C8, M4(2), C22×C4, C28, C28, C2×C14, C2×C14, M5(2), C2×M4(2), C56, C56, C2×C28, C2×C28, C22×C14, C23.C8, C7⋊C16, C2×C56, C7×M4(2), C22×C28, C28.C8, C14×M4(2), C56.D4
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, D7, C22⋊C4, C2×C8, M4(2), Dic7, D14, C22⋊C8, C7⋊C8, C2×Dic7, C7⋊D4, C23.C8, C2×C7⋊C8, C4.Dic7, C23.D7, C28.55D4, C56.D4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 99 50 64 43 85 36 106 29 71 22 92 15 57 8 78)(2 112 51 77 44 98 37 63 30 84 23 105 16 70 9 91)(3 69 52 90 45 111 38 76 31 97 24 62 17 83 10 104)(4 82 53 103 46 68 39 89 32 110 25 75 18 96 11 61)(5 95 54 60 47 81 40 102 33 67 26 88 19 109 12 74)(6 108 55 73 48 94 41 59 34 80 27 101 20 66 13 87)(7 65 56 86 49 107 42 72 35 93 28 58 21 79 14 100)
(1 71 50 64 43 57 36 106 29 99 22 92 15 85 8 78)(2 112 51 105 44 98 37 91 30 84 23 77 16 70 9 63)(3 97 52 90 45 83 38 76 31 69 24 62 17 111 10 104)(4 82 53 75 46 68 39 61 32 110 25 103 18 96 11 89)(5 67 54 60 47 109 40 102 33 95 26 88 19 81 12 74)(6 108 55 101 48 94 41 87 34 80 27 73 20 66 13 59)(7 93 56 86 49 79 42 72 35 65 28 58 21 107 14 100)
G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,99,50,64,43,85,36,106,29,71,22,92,15,57,8,78)(2,112,51,77,44,98,37,63,30,84,23,105,16,70,9,91)(3,69,52,90,45,111,38,76,31,97,24,62,17,83,10,104)(4,82,53,103,46,68,39,89,32,110,25,75,18,96,11,61)(5,95,54,60,47,81,40,102,33,67,26,88,19,109,12,74)(6,108,55,73,48,94,41,59,34,80,27,101,20,66,13,87)(7,65,56,86,49,107,42,72,35,93,28,58,21,79,14,100), (1,71,50,64,43,57,36,106,29,99,22,92,15,85,8,78)(2,112,51,105,44,98,37,91,30,84,23,77,16,70,9,63)(3,97,52,90,45,83,38,76,31,69,24,62,17,111,10,104)(4,82,53,75,46,68,39,61,32,110,25,103,18,96,11,89)(5,67,54,60,47,109,40,102,33,95,26,88,19,81,12,74)(6,108,55,101,48,94,41,87,34,80,27,73,20,66,13,59)(7,93,56,86,49,79,42,72,35,65,28,58,21,107,14,100)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,99,50,64,43,85,36,106,29,71,22,92,15,57,8,78)(2,112,51,77,44,98,37,63,30,84,23,105,16,70,9,91)(3,69,52,90,45,111,38,76,31,97,24,62,17,83,10,104)(4,82,53,103,46,68,39,89,32,110,25,75,18,96,11,61)(5,95,54,60,47,81,40,102,33,67,26,88,19,109,12,74)(6,108,55,73,48,94,41,59,34,80,27,101,20,66,13,87)(7,65,56,86,49,107,42,72,35,93,28,58,21,79,14,100), (1,71,50,64,43,57,36,106,29,99,22,92,15,85,8,78)(2,112,51,105,44,98,37,91,30,84,23,77,16,70,9,63)(3,97,52,90,45,83,38,76,31,69,24,62,17,111,10,104)(4,82,53,75,46,68,39,61,32,110,25,103,18,96,11,89)(5,67,54,60,47,109,40,102,33,95,26,88,19,81,12,74)(6,108,55,101,48,94,41,87,34,80,27,73,20,66,13,59)(7,93,56,86,49,79,42,72,35,65,28,58,21,107,14,100) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,99,50,64,43,85,36,106,29,71,22,92,15,57,8,78),(2,112,51,77,44,98,37,63,30,84,23,105,16,70,9,91),(3,69,52,90,45,111,38,76,31,97,24,62,17,83,10,104),(4,82,53,103,46,68,39,89,32,110,25,75,18,96,11,61),(5,95,54,60,47,81,40,102,33,67,26,88,19,109,12,74),(6,108,55,73,48,94,41,59,34,80,27,101,20,66,13,87),(7,65,56,86,49,107,42,72,35,93,28,58,21,79,14,100)], [(1,71,50,64,43,57,36,106,29,99,22,92,15,85,8,78),(2,112,51,105,44,98,37,91,30,84,23,77,16,70,9,63),(3,97,52,90,45,83,38,76,31,69,24,62,17,111,10,104),(4,82,53,75,46,68,39,61,32,110,25,103,18,96,11,89),(5,67,54,60,47,109,40,102,33,95,26,88,19,81,12,74),(6,108,55,101,48,94,41,87,34,80,27,73,20,66,13,59),(7,93,56,86,49,79,42,72,35,65,28,58,21,107,14,100)]])
82 conjugacy classes
| class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 7A | 7B | 7C | 8A | 8B | 8C | 8D | 8E | 8F | 14A | ··· | 14I | 14J | ··· | 14O | 16A | ··· | 16H | 28A | ··· | 28L | 28M | ··· | 28R | 56A | ··· | 56X |
| order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 8 | 8 | 14 | ··· | 14 | 14 | ··· | 14 | 16 | ··· | 16 | 28 | ··· | 28 | 28 | ··· | 28 | 56 | ··· | 56 |
| size | 1 | 1 | 2 | 4 | 1 | 1 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 28 | ··· | 28 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
82 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
| type | + | + | + | + | + | - | + | - | |||||||||||
| image | C1 | C2 | C2 | C4 | C4 | C8 | C8 | D4 | D7 | M4(2) | Dic7 | D14 | Dic7 | C7⋊D4 | C7⋊C8 | C7⋊C8 | C4.Dic7 | C23.C8 | C56.D4 |
| kernel | C56.D4 | C28.C8 | C14×M4(2) | C2×C56 | C22×C28 | C2×C28 | C22×C14 | C56 | C2×M4(2) | C28 | C2×C8 | C2×C8 | C22×C4 | C8 | C2×C4 | C23 | C4 | C7 | C1 |
| # reps | 1 | 2 | 1 | 2 | 2 | 4 | 4 | 2 | 3 | 2 | 3 | 3 | 3 | 12 | 6 | 6 | 12 | 2 | 12 |
Matrix representation of C56.D4 ►in GL4(𝔽113) generated by
| 0 | 30 | 0 | 0 |
| 111 | 0 | 0 | 0 |
| 0 | 0 | 0 | 49 |
| 0 | 0 | 57 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 112 |
| 0 | 1 | 0 | 0 |
| 98 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 0 |
| 15 | 0 | 0 | 0 |
G:=sub<GL(4,GF(113))| [0,111,0,0,30,0,0,0,0,0,0,57,0,0,49,0],[0,0,0,98,0,0,1,0,1,0,0,0,0,112,0,0],[0,0,0,15,0,0,1,0,1,0,0,0,0,1,0,0] >;
C56.D4 in GAP, Magma, Sage, TeX
C_{56}.D_4 % in TeX
G:=Group("C56.D4"); // GroupNames label
G:=SmallGroup(448,110);
// by ID
G=gap.SmallGroup(448,110);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,28,141,387,100,1123,102,18822]);
// Polycyclic
G:=Group<a,b,c|a^56=1,b^4=a^42,c^2=a^49,b*a*b^-1=a^13,c*a*c^-1=a^41,c*b*c^-1=a^7*b^3>;
// generators/relations