Extensions 1→N→G→Q→1 with N=D56 and Q=C4

Direct product G=N×Q with N=D56 and Q=C4
dρLabelID
C4×D56224C4xD56448,226

Semidirect products G=N:Q with N=D56 and Q=C4
extensionφ:Q→Out NdρLabelID
D561C4 = C2.D112φ: C4/C2C2 ⊆ Out D56224D56:1C4448,66
D562C4 = D562C4φ: C4/C2C2 ⊆ Out D561124D56:2C4448,75
D563C4 = D56⋊C4φ: C4/C2C2 ⊆ Out D56224D56:3C4448,245
D564C4 = D564C4φ: C4/C2C2 ⊆ Out D561124D56:4C4448,251
D565C4 = C14.D16φ: C4/C2C2 ⊆ Out D56224D56:5C4448,48
D566C4 = Dic75D8φ: C4/C2C2 ⊆ Out D56224D56:6C4448,406
D567C4 = D567C4φ: C4/C2C2 ⊆ Out D561124D56:7C4448,429
D568C4 = D568C4φ: C4/C2C2 ⊆ Out D561124D56:8C4448,45
D569C4 = D569C4φ: C4/C2C2 ⊆ Out D56224D56:9C4448,403
D5610C4 = D5610C4φ: C4/C2C2 ⊆ Out D561124D56:10C4448,428
D5611C4 = D5611C4φ: trivial image1122D56:11C4448,234

Non-split extensions G=N.Q with N=D56 and Q=C4
extensionφ:Q→Out NdρLabelID
D56.1C4 = D56.1C4φ: C4/C2C2 ⊆ Out D562242D56.1C4448,67
D56.2C4 = C28.3D8φ: C4/C2C2 ⊆ Out D561124+D56.2C4448,73
D56.3C4 = Dic28.C4φ: C4/C2C2 ⊆ Out D562244D56.3C4448,54
D56.4C4 = D56.C4φ: C4/C2C2 ⊆ Out D561124+D56.4C4448,52

׿
×
𝔽