metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D56⋊8C4, C8.22D28, C56.38D4, Dic28⋊8C4, C28.3SD16, C8.1(C4×D7), C4.Q8⋊1D7, C7⋊1(D8⋊2C4), C56.21(C2×C4), (C2×C14).30D8, (C2×C8).41D14, (C2×C28).88D4, C4.7(Q8⋊D7), C28.C8⋊4C2, C4.1(D14⋊C4), D56⋊7C2.6C2, C28.1(C22⋊C4), (C2×C56).47C22, C22.8(D4⋊D7), C2.6(C14.D8), C14.4(D4⋊C4), (C7×C4.Q8)⋊1C2, (C2×C4).16(C7⋊D4), SmallGroup(448,45)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D56⋊8C4
G = < a,b,c | a56=b2=c4=1, bab=a-1, cac-1=a43, cbc-1=a7b >
Subgroups: 364 in 58 conjugacy classes, 25 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, Q8, D7, C14, C14, C16, C4⋊C4, C2×C8, D8, SD16, Q16, C4○D4, Dic7, C28, C28, D14, C2×C14, C4.Q8, M5(2), C4○D8, C56, Dic14, C4×D7, D28, C7⋊D4, C2×C28, C2×C28, D8⋊2C4, C7⋊C16, C56⋊C2, D56, Dic28, C7×C4⋊C4, C2×C56, C4○D28, C28.C8, C7×C4.Q8, D56⋊7C2, D56⋊8C4
Quotients: C1, C2, C4, C22, C2×C4, D4, D7, C22⋊C4, D8, SD16, D14, D4⋊C4, C4×D7, D28, C7⋊D4, D8⋊2C4, D14⋊C4, D4⋊D7, Q8⋊D7, C14.D8, D56⋊8C4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 59)(2 58)(3 57)(4 112)(5 111)(6 110)(7 109)(8 108)(9 107)(10 106)(11 105)(12 104)(13 103)(14 102)(15 101)(16 100)(17 99)(18 98)(19 97)(20 96)(21 95)(22 94)(23 93)(24 92)(25 91)(26 90)(27 89)(28 88)(29 87)(30 86)(31 85)(32 84)(33 83)(34 82)(35 81)(36 80)(37 79)(38 78)(39 77)(40 76)(41 75)(42 74)(43 73)(44 72)(45 71)(46 70)(47 69)(48 68)(49 67)(50 66)(51 65)(52 64)(53 63)(54 62)(55 61)(56 60)
(2 44)(3 31)(4 18)(6 48)(7 35)(8 22)(10 52)(11 39)(12 26)(14 56)(15 43)(16 30)(19 47)(20 34)(23 51)(24 38)(27 55)(28 42)(32 46)(36 50)(40 54)(57 106 85 78)(58 93 86 65)(59 80 87 108)(60 67 88 95)(61 110 89 82)(62 97 90 69)(63 84 91 112)(64 71 92 99)(66 101 94 73)(68 75 96 103)(70 105 98 77)(72 79 100 107)(74 109 102 81)(76 83 104 111)
G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,59)(2,58)(3,57)(4,112)(5,111)(6,110)(7,109)(8,108)(9,107)(10,106)(11,105)(12,104)(13,103)(14,102)(15,101)(16,100)(17,99)(18,98)(19,97)(20,96)(21,95)(22,94)(23,93)(24,92)(25,91)(26,90)(27,89)(28,88)(29,87)(30,86)(31,85)(32,84)(33,83)(34,82)(35,81)(36,80)(37,79)(38,78)(39,77)(40,76)(41,75)(42,74)(43,73)(44,72)(45,71)(46,70)(47,69)(48,68)(49,67)(50,66)(51,65)(52,64)(53,63)(54,62)(55,61)(56,60), (2,44)(3,31)(4,18)(6,48)(7,35)(8,22)(10,52)(11,39)(12,26)(14,56)(15,43)(16,30)(19,47)(20,34)(23,51)(24,38)(27,55)(28,42)(32,46)(36,50)(40,54)(57,106,85,78)(58,93,86,65)(59,80,87,108)(60,67,88,95)(61,110,89,82)(62,97,90,69)(63,84,91,112)(64,71,92,99)(66,101,94,73)(68,75,96,103)(70,105,98,77)(72,79,100,107)(74,109,102,81)(76,83,104,111)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,59)(2,58)(3,57)(4,112)(5,111)(6,110)(7,109)(8,108)(9,107)(10,106)(11,105)(12,104)(13,103)(14,102)(15,101)(16,100)(17,99)(18,98)(19,97)(20,96)(21,95)(22,94)(23,93)(24,92)(25,91)(26,90)(27,89)(28,88)(29,87)(30,86)(31,85)(32,84)(33,83)(34,82)(35,81)(36,80)(37,79)(38,78)(39,77)(40,76)(41,75)(42,74)(43,73)(44,72)(45,71)(46,70)(47,69)(48,68)(49,67)(50,66)(51,65)(52,64)(53,63)(54,62)(55,61)(56,60), (2,44)(3,31)(4,18)(6,48)(7,35)(8,22)(10,52)(11,39)(12,26)(14,56)(15,43)(16,30)(19,47)(20,34)(23,51)(24,38)(27,55)(28,42)(32,46)(36,50)(40,54)(57,106,85,78)(58,93,86,65)(59,80,87,108)(60,67,88,95)(61,110,89,82)(62,97,90,69)(63,84,91,112)(64,71,92,99)(66,101,94,73)(68,75,96,103)(70,105,98,77)(72,79,100,107)(74,109,102,81)(76,83,104,111) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,59),(2,58),(3,57),(4,112),(5,111),(6,110),(7,109),(8,108),(9,107),(10,106),(11,105),(12,104),(13,103),(14,102),(15,101),(16,100),(17,99),(18,98),(19,97),(20,96),(21,95),(22,94),(23,93),(24,92),(25,91),(26,90),(27,89),(28,88),(29,87),(30,86),(31,85),(32,84),(33,83),(34,82),(35,81),(36,80),(37,79),(38,78),(39,77),(40,76),(41,75),(42,74),(43,73),(44,72),(45,71),(46,70),(47,69),(48,68),(49,67),(50,66),(51,65),(52,64),(53,63),(54,62),(55,61),(56,60)], [(2,44),(3,31),(4,18),(6,48),(7,35),(8,22),(10,52),(11,39),(12,26),(14,56),(15,43),(16,30),(19,47),(20,34),(23,51),(24,38),(27,55),(28,42),(32,46),(36,50),(40,54),(57,106,85,78),(58,93,86,65),(59,80,87,108),(60,67,88,95),(61,110,89,82),(62,97,90,69),(63,84,91,112),(64,71,92,99),(66,101,94,73),(68,75,96,103),(70,105,98,77),(72,79,100,107),(74,109,102,81),(76,83,104,111)]])
58 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 7A | 7B | 7C | 8A | 8B | 8C | 14A | ··· | 14I | 16A | 16B | 16C | 16D | 28A | ··· | 28F | 28G | ··· | 28R | 56A | ··· | 56L |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 8 | 8 | 8 | 14 | ··· | 14 | 16 | 16 | 16 | 16 | 28 | ··· | 28 | 28 | ··· | 28 | 56 | ··· | 56 |
size | 1 | 1 | 2 | 56 | 2 | 2 | 8 | 8 | 56 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | ··· | 2 | 28 | 28 | 28 | 28 | 4 | ··· | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
58 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | D4 | D4 | D7 | SD16 | D8 | D14 | C4×D7 | D28 | C7⋊D4 | D8⋊2C4 | Q8⋊D7 | D4⋊D7 | D56⋊8C4 |
kernel | D56⋊8C4 | C28.C8 | C7×C4.Q8 | D56⋊7C2 | D56 | Dic28 | C56 | C2×C28 | C4.Q8 | C28 | C2×C14 | C2×C8 | C8 | C8 | C2×C4 | C7 | C4 | C22 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 3 | 2 | 2 | 3 | 6 | 6 | 6 | 2 | 3 | 3 | 12 |
Matrix representation of D56⋊8C4 ►in GL4(𝔽113) generated by
91 | 91 | 0 | 0 |
22 | 91 | 0 | 0 |
0 | 0 | 95 | 18 |
0 | 0 | 95 | 95 |
0 | 0 | 95 | 18 |
0 | 0 | 95 | 95 |
91 | 91 | 0 | 0 |
22 | 91 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 112 | 0 | 0 |
0 | 0 | 100 | 13 |
0 | 0 | 13 | 13 |
G:=sub<GL(4,GF(113))| [91,22,0,0,91,91,0,0,0,0,95,95,0,0,18,95],[0,0,91,22,0,0,91,91,95,95,0,0,18,95,0,0],[1,0,0,0,0,112,0,0,0,0,100,13,0,0,13,13] >;
D56⋊8C4 in GAP, Magma, Sage, TeX
D_{56}\rtimes_8C_4
% in TeX
G:=Group("D56:8C4");
// GroupNames label
G:=SmallGroup(448,45);
// by ID
G=gap.SmallGroup(448,45);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,141,36,758,675,794,192,1684,851,102,18822]);
// Polycyclic
G:=Group<a,b,c|a^56=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^43,c*b*c^-1=a^7*b>;
// generators/relations