Copied to
clipboard

G = D568C4order 448 = 26·7

8th semidirect product of D56 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D568C4, C8.22D28, C56.38D4, Dic288C4, C28.3SD16, C8.1(C4×D7), C4.Q81D7, C71(D82C4), C56.21(C2×C4), (C2×C14).30D8, (C2×C8).41D14, (C2×C28).88D4, C4.7(Q8⋊D7), C28.C84C2, C4.1(D14⋊C4), D567C2.6C2, C28.1(C22⋊C4), (C2×C56).47C22, C22.8(D4⋊D7), C2.6(C14.D8), C14.4(D4⋊C4), (C7×C4.Q8)⋊1C2, (C2×C4).16(C7⋊D4), SmallGroup(448,45)

Series: Derived Chief Lower central Upper central

C1C56 — D568C4
C1C7C14C28C2×C28C2×C56D567C2 — D568C4
C7C14C28C56 — D568C4
C1C2C2×C4C2×C8C4.Q8

Generators and relations for D568C4
 G = < a,b,c | a56=b2=c4=1, bab=a-1, cac-1=a43, cbc-1=a7b >

Subgroups: 364 in 58 conjugacy classes, 25 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, Q8, D7, C14, C14, C16, C4⋊C4, C2×C8, D8, SD16, Q16, C4○D4, Dic7, C28, C28, D14, C2×C14, C4.Q8, M5(2), C4○D8, C56, Dic14, C4×D7, D28, C7⋊D4, C2×C28, C2×C28, D82C4, C7⋊C16, C56⋊C2, D56, Dic28, C7×C4⋊C4, C2×C56, C4○D28, C28.C8, C7×C4.Q8, D567C2, D568C4
Quotients: C1, C2, C4, C22, C2×C4, D4, D7, C22⋊C4, D8, SD16, D14, D4⋊C4, C4×D7, D28, C7⋊D4, D82C4, D14⋊C4, D4⋊D7, Q8⋊D7, C14.D8, D568C4

Smallest permutation representation of D568C4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 59)(2 58)(3 57)(4 112)(5 111)(6 110)(7 109)(8 108)(9 107)(10 106)(11 105)(12 104)(13 103)(14 102)(15 101)(16 100)(17 99)(18 98)(19 97)(20 96)(21 95)(22 94)(23 93)(24 92)(25 91)(26 90)(27 89)(28 88)(29 87)(30 86)(31 85)(32 84)(33 83)(34 82)(35 81)(36 80)(37 79)(38 78)(39 77)(40 76)(41 75)(42 74)(43 73)(44 72)(45 71)(46 70)(47 69)(48 68)(49 67)(50 66)(51 65)(52 64)(53 63)(54 62)(55 61)(56 60)
(2 44)(3 31)(4 18)(6 48)(7 35)(8 22)(10 52)(11 39)(12 26)(14 56)(15 43)(16 30)(19 47)(20 34)(23 51)(24 38)(27 55)(28 42)(32 46)(36 50)(40 54)(57 106 85 78)(58 93 86 65)(59 80 87 108)(60 67 88 95)(61 110 89 82)(62 97 90 69)(63 84 91 112)(64 71 92 99)(66 101 94 73)(68 75 96 103)(70 105 98 77)(72 79 100 107)(74 109 102 81)(76 83 104 111)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,59)(2,58)(3,57)(4,112)(5,111)(6,110)(7,109)(8,108)(9,107)(10,106)(11,105)(12,104)(13,103)(14,102)(15,101)(16,100)(17,99)(18,98)(19,97)(20,96)(21,95)(22,94)(23,93)(24,92)(25,91)(26,90)(27,89)(28,88)(29,87)(30,86)(31,85)(32,84)(33,83)(34,82)(35,81)(36,80)(37,79)(38,78)(39,77)(40,76)(41,75)(42,74)(43,73)(44,72)(45,71)(46,70)(47,69)(48,68)(49,67)(50,66)(51,65)(52,64)(53,63)(54,62)(55,61)(56,60), (2,44)(3,31)(4,18)(6,48)(7,35)(8,22)(10,52)(11,39)(12,26)(14,56)(15,43)(16,30)(19,47)(20,34)(23,51)(24,38)(27,55)(28,42)(32,46)(36,50)(40,54)(57,106,85,78)(58,93,86,65)(59,80,87,108)(60,67,88,95)(61,110,89,82)(62,97,90,69)(63,84,91,112)(64,71,92,99)(66,101,94,73)(68,75,96,103)(70,105,98,77)(72,79,100,107)(74,109,102,81)(76,83,104,111)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,59)(2,58)(3,57)(4,112)(5,111)(6,110)(7,109)(8,108)(9,107)(10,106)(11,105)(12,104)(13,103)(14,102)(15,101)(16,100)(17,99)(18,98)(19,97)(20,96)(21,95)(22,94)(23,93)(24,92)(25,91)(26,90)(27,89)(28,88)(29,87)(30,86)(31,85)(32,84)(33,83)(34,82)(35,81)(36,80)(37,79)(38,78)(39,77)(40,76)(41,75)(42,74)(43,73)(44,72)(45,71)(46,70)(47,69)(48,68)(49,67)(50,66)(51,65)(52,64)(53,63)(54,62)(55,61)(56,60), (2,44)(3,31)(4,18)(6,48)(7,35)(8,22)(10,52)(11,39)(12,26)(14,56)(15,43)(16,30)(19,47)(20,34)(23,51)(24,38)(27,55)(28,42)(32,46)(36,50)(40,54)(57,106,85,78)(58,93,86,65)(59,80,87,108)(60,67,88,95)(61,110,89,82)(62,97,90,69)(63,84,91,112)(64,71,92,99)(66,101,94,73)(68,75,96,103)(70,105,98,77)(72,79,100,107)(74,109,102,81)(76,83,104,111) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,59),(2,58),(3,57),(4,112),(5,111),(6,110),(7,109),(8,108),(9,107),(10,106),(11,105),(12,104),(13,103),(14,102),(15,101),(16,100),(17,99),(18,98),(19,97),(20,96),(21,95),(22,94),(23,93),(24,92),(25,91),(26,90),(27,89),(28,88),(29,87),(30,86),(31,85),(32,84),(33,83),(34,82),(35,81),(36,80),(37,79),(38,78),(39,77),(40,76),(41,75),(42,74),(43,73),(44,72),(45,71),(46,70),(47,69),(48,68),(49,67),(50,66),(51,65),(52,64),(53,63),(54,62),(55,61),(56,60)], [(2,44),(3,31),(4,18),(6,48),(7,35),(8,22),(10,52),(11,39),(12,26),(14,56),(15,43),(16,30),(19,47),(20,34),(23,51),(24,38),(27,55),(28,42),(32,46),(36,50),(40,54),(57,106,85,78),(58,93,86,65),(59,80,87,108),(60,67,88,95),(61,110,89,82),(62,97,90,69),(63,84,91,112),(64,71,92,99),(66,101,94,73),(68,75,96,103),(70,105,98,77),(72,79,100,107),(74,109,102,81),(76,83,104,111)]])

58 conjugacy classes

class 1 2A2B2C4A4B4C4D4E7A7B7C8A8B8C14A···14I16A16B16C16D28A···28F28G···28R56A···56L
order12224444477788814···141616161628···2828···2856···56
size112562288562222242···2282828284···48···84···4

58 irreducible representations

dim1111112222222224444
type++++++++++++
imageC1C2C2C2C4C4D4D4D7SD16D8D14C4×D7D28C7⋊D4D82C4Q8⋊D7D4⋊D7D568C4
kernelD568C4C28.C8C7×C4.Q8D567C2D56Dic28C56C2×C28C4.Q8C28C2×C14C2×C8C8C8C2×C4C7C4C22C1
# reps11112211322366623312

Matrix representation of D568C4 in GL4(𝔽113) generated by

919100
229100
009518
009595
,
009518
009595
919100
229100
,
1000
011200
0010013
001313
G:=sub<GL(4,GF(113))| [91,22,0,0,91,91,0,0,0,0,95,95,0,0,18,95],[0,0,91,22,0,0,91,91,95,95,0,0,18,95,0,0],[1,0,0,0,0,112,0,0,0,0,100,13,0,0,13,13] >;

D568C4 in GAP, Magma, Sage, TeX

D_{56}\rtimes_8C_4
% in TeX

G:=Group("D56:8C4");
// GroupNames label

G:=SmallGroup(448,45);
// by ID

G=gap.SmallGroup(448,45);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,141,36,758,675,794,192,1684,851,102,18822]);
// Polycyclic

G:=Group<a,b,c|a^56=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^43,c*b*c^-1=a^7*b>;
// generators/relations

׿
×
𝔽