Copied to
clipboard

G = D562C4order 448 = 26·7

2nd semidirect product of D56 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D562C4, C56.86D4, Dic282C4, M5(2)⋊6D7, C28.7SD16, C22.3D56, C8.6(C4×D7), C56.3(C2×C4), C8⋊Dic71C2, (C2×C14).2D8, C72(D82C4), (C2×C4).11D28, (C2×C8).48D14, (C2×C28).101D4, C8.43(C7⋊D4), C4.20(D14⋊C4), D567C2.7C2, C4.12(C56⋊C2), (C7×M5(2))⋊10C2, (C2×C56).52C22, C28.44(C22⋊C4), C2.11(C2.D56), C14.19(D4⋊C4), SmallGroup(448,75)

Series: Derived Chief Lower central Upper central

C1C56 — D562C4
C1C7C14C28C56C2×C56D567C2 — D562C4
C7C14C28C56 — D562C4
C1C2C2×C4C2×C8M5(2)

Generators and relations for D562C4
 G = < a,b,c | a56=b2=c4=1, bab=a-1, cac-1=a27, cbc-1=a47b >

Subgroups: 436 in 58 conjugacy classes, 25 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, Q8, D7, C14, C14, C16, C4⋊C4, C2×C8, D8, SD16, Q16, C4○D4, Dic7, C28, D14, C2×C14, C4.Q8, M5(2), C4○D8, C56, Dic14, C4×D7, D28, C2×Dic7, C7⋊D4, C2×C28, D82C4, C112, C56⋊C2, D56, Dic28, C4⋊Dic7, C2×C56, C4○D28, C8⋊Dic7, C7×M5(2), D567C2, D562C4
Quotients: C1, C2, C4, C22, C2×C4, D4, D7, C22⋊C4, D8, SD16, D14, D4⋊C4, C4×D7, D28, C7⋊D4, D82C4, C56⋊C2, D56, D14⋊C4, C2.D56, D562C4

Smallest permutation representation of D562C4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 63)(2 62)(3 61)(4 60)(5 59)(6 58)(7 57)(8 112)(9 111)(10 110)(11 109)(12 108)(13 107)(14 106)(15 105)(16 104)(17 103)(18 102)(19 101)(20 100)(21 99)(22 98)(23 97)(24 96)(25 95)(26 94)(27 93)(28 92)(29 91)(30 90)(31 89)(32 88)(33 87)(34 86)(35 85)(36 84)(37 83)(38 82)(39 81)(40 80)(41 79)(42 78)(43 77)(44 76)(45 75)(46 74)(47 73)(48 72)(49 71)(50 70)(51 69)(52 68)(53 67)(54 66)(55 65)(56 64)
(1 15)(2 42)(3 13)(4 40)(5 11)(6 38)(7 9)(8 36)(10 34)(12 32)(14 30)(16 28)(17 55)(18 26)(19 53)(20 24)(21 51)(23 49)(25 47)(27 45)(29 43)(31 41)(33 39)(35 37)(44 56)(46 54)(48 52)(57 92 85 64)(58 63 86 91)(59 90 87 62)(60 61 88 89)(65 84 93 112)(66 111 94 83)(67 82 95 110)(68 109 96 81)(69 80 97 108)(70 107 98 79)(71 78 99 106)(72 105 100 77)(73 76 101 104)(74 103 102 75)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,63)(2,62)(3,61)(4,60)(5,59)(6,58)(7,57)(8,112)(9,111)(10,110)(11,109)(12,108)(13,107)(14,106)(15,105)(16,104)(17,103)(18,102)(19,101)(20,100)(21,99)(22,98)(23,97)(24,96)(25,95)(26,94)(27,93)(28,92)(29,91)(30,90)(31,89)(32,88)(33,87)(34,86)(35,85)(36,84)(37,83)(38,82)(39,81)(40,80)(41,79)(42,78)(43,77)(44,76)(45,75)(46,74)(47,73)(48,72)(49,71)(50,70)(51,69)(52,68)(53,67)(54,66)(55,65)(56,64), (1,15)(2,42)(3,13)(4,40)(5,11)(6,38)(7,9)(8,36)(10,34)(12,32)(14,30)(16,28)(17,55)(18,26)(19,53)(20,24)(21,51)(23,49)(25,47)(27,45)(29,43)(31,41)(33,39)(35,37)(44,56)(46,54)(48,52)(57,92,85,64)(58,63,86,91)(59,90,87,62)(60,61,88,89)(65,84,93,112)(66,111,94,83)(67,82,95,110)(68,109,96,81)(69,80,97,108)(70,107,98,79)(71,78,99,106)(72,105,100,77)(73,76,101,104)(74,103,102,75)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,63)(2,62)(3,61)(4,60)(5,59)(6,58)(7,57)(8,112)(9,111)(10,110)(11,109)(12,108)(13,107)(14,106)(15,105)(16,104)(17,103)(18,102)(19,101)(20,100)(21,99)(22,98)(23,97)(24,96)(25,95)(26,94)(27,93)(28,92)(29,91)(30,90)(31,89)(32,88)(33,87)(34,86)(35,85)(36,84)(37,83)(38,82)(39,81)(40,80)(41,79)(42,78)(43,77)(44,76)(45,75)(46,74)(47,73)(48,72)(49,71)(50,70)(51,69)(52,68)(53,67)(54,66)(55,65)(56,64), (1,15)(2,42)(3,13)(4,40)(5,11)(6,38)(7,9)(8,36)(10,34)(12,32)(14,30)(16,28)(17,55)(18,26)(19,53)(20,24)(21,51)(23,49)(25,47)(27,45)(29,43)(31,41)(33,39)(35,37)(44,56)(46,54)(48,52)(57,92,85,64)(58,63,86,91)(59,90,87,62)(60,61,88,89)(65,84,93,112)(66,111,94,83)(67,82,95,110)(68,109,96,81)(69,80,97,108)(70,107,98,79)(71,78,99,106)(72,105,100,77)(73,76,101,104)(74,103,102,75) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,63),(2,62),(3,61),(4,60),(5,59),(6,58),(7,57),(8,112),(9,111),(10,110),(11,109),(12,108),(13,107),(14,106),(15,105),(16,104),(17,103),(18,102),(19,101),(20,100),(21,99),(22,98),(23,97),(24,96),(25,95),(26,94),(27,93),(28,92),(29,91),(30,90),(31,89),(32,88),(33,87),(34,86),(35,85),(36,84),(37,83),(38,82),(39,81),(40,80),(41,79),(42,78),(43,77),(44,76),(45,75),(46,74),(47,73),(48,72),(49,71),(50,70),(51,69),(52,68),(53,67),(54,66),(55,65),(56,64)], [(1,15),(2,42),(3,13),(4,40),(5,11),(6,38),(7,9),(8,36),(10,34),(12,32),(14,30),(16,28),(17,55),(18,26),(19,53),(20,24),(21,51),(23,49),(25,47),(27,45),(29,43),(31,41),(33,39),(35,37),(44,56),(46,54),(48,52),(57,92,85,64),(58,63,86,91),(59,90,87,62),(60,61,88,89),(65,84,93,112),(66,111,94,83),(67,82,95,110),(68,109,96,81),(69,80,97,108),(70,107,98,79),(71,78,99,106),(72,105,100,77),(73,76,101,104),(74,103,102,75)]])

76 conjugacy classes

class 1 2A2B2C4A4B4C4D4E7A7B7C8A8B8C14A14B14C14D14E14F16A16B16C16D28A···28F28G28H28I56A···56L56M···56R112A···112X
order1222444447778881414141414141616161628···2828282856···5656···56112···112
size112562256565622222422244444442···24442···24···44···4

76 irreducible representations

dim1111112222222222244
type+++++++++++
imageC1C2C2C2C4C4D4D4D7SD16D8D14C4×D7C7⋊D4D28C56⋊C2D56D82C4D562C4
kernelD562C4C8⋊Dic7C7×M5(2)D567C2D56Dic28C56C2×C28M5(2)C28C2×C14C2×C8C8C8C2×C4C4C22C7C1
# reps1111221132236661212212

Matrix representation of D562C4 in GL6(𝔽113)

791120000
100000
0009700
0078700
000591313
0035410013
,
791120000
25340000
00501697
001100087
0024135459
0082135954
,
1500000
55980000
0017700
00011200
00774810013
0039651313

G:=sub<GL(6,GF(113))| [79,1,0,0,0,0,112,0,0,0,0,0,0,0,0,7,0,3,0,0,97,87,59,54,0,0,0,0,13,100,0,0,0,0,13,13],[79,25,0,0,0,0,112,34,0,0,0,0,0,0,5,110,24,82,0,0,0,0,13,13,0,0,16,0,54,59,0,0,97,87,59,54],[15,55,0,0,0,0,0,98,0,0,0,0,0,0,1,0,77,39,0,0,77,112,48,65,0,0,0,0,100,13,0,0,0,0,13,13] >;

D562C4 in GAP, Magma, Sage, TeX

D_{56}\rtimes_2C_4
% in TeX

G:=Group("D56:2C4");
// GroupNames label

G:=SmallGroup(448,75);
// by ID

G=gap.SmallGroup(448,75);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,85,92,422,387,268,570,136,1684,102,18822]);
// Polycyclic

G:=Group<a,b,c|a^56=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^27,c*b*c^-1=a^47*b>;
// generators/relations

׿
×
𝔽