Extensions 1→N→G→Q→1 with N=Dic28 and Q=C4

Direct product G=NxQ with N=Dic28 and Q=C4
dρLabelID
C4xDic28448C4xDic28448,232

Semidirect products G=N:Q with N=Dic28 and Q=C4
extensionφ:Q→Out NdρLabelID
Dic28:1C4 = C56.78D4φ: C4/C2C2 ⊆ Out Dic28448Dic28:1C4448,60
Dic28:2C4 = D56:2C4φ: C4/C2C2 ⊆ Out Dic281124Dic28:2C4448,75
Dic28:3C4 = Dic28:C4φ: C4/C2C2 ⊆ Out Dic28448Dic28:3C4448,250
Dic28:4C4 = D56:4C4φ: C4/C2C2 ⊆ Out Dic281124Dic28:4C4448,251
Dic28:5C4 = C56.6D4φ: C4/C2C2 ⊆ Out Dic28448Dic28:5C4448,49
Dic28:6C4 = Dic28:6C4φ: C4/C2C2 ⊆ Out Dic28448Dic28:6C4448,407
Dic28:7C4 = D56:7C4φ: C4/C2C2 ⊆ Out Dic281124Dic28:7C4448,429
Dic28:8C4 = D56:8C4φ: C4/C2C2 ⊆ Out Dic281124Dic28:8C4448,45
Dic28:9C4 = Dic28:9C4φ: C4/C2C2 ⊆ Out Dic28448Dic28:9C4448,387
Dic28:10C4 = D56:10C4φ: C4/C2C2 ⊆ Out Dic281124Dic28:10C4448,428
Dic28:11C4 = D56:11C4φ: trivial image1122Dic28:11C4448,234

Non-split extensions G=N.Q with N=Dic28 and Q=C4
extensionφ:Q→Out NdρLabelID
Dic28.1C4 = D56.1C4φ: C4/C2C2 ⊆ Out Dic282242Dic28.1C4448,67
Dic28.2C4 = C28.4D8φ: C4/C2C2 ⊆ Out Dic282244-Dic28.2C4448,74
Dic28.3C4 = Dic28.C4φ: C4/C2C2 ⊆ Out Dic282244Dic28.3C4448,54
Dic28.4C4 = C56.8D4φ: C4/C2C2 ⊆ Out Dic282244-Dic28.4C4448,53

׿
x
:
Z
F
o
wr
Q
<