Extensions 1→N→G→Q→1 with N=D46D14 and Q=C2

Direct product G=N×Q with N=D46D14 and Q=C2
dρLabelID
C2×D46D14112C2xD4:6D14448,1371

Semidirect products G=N:Q with N=D46D14 and Q=C2
extensionφ:Q→Out NdρLabelID
D46D141C2 = C23⋊D28φ: C2/C1C2 ⊆ Out D46D14568+D4:6D14:1C2448,275
D46D142C2 = D281D4φ: C2/C1C2 ⊆ Out D46D14568+D4:6D14:2C2448,281
D46D143C2 = C24⋊D14φ: C2/C1C2 ⊆ Out D46D14564D4:6D14:3C2448,566
D46D144C2 = D285D4φ: C2/C1C2 ⊆ Out D46D14564D4:6D14:4C2448,611
D46D145C2 = D813D14φ: C2/C1C2 ⊆ Out D46D141124D4:6D14:5C2448,1210
D46D146C2 = D28.29D4φ: C2/C1C2 ⊆ Out D46D141124D4:6D14:6C2448,1215
D46D147C2 = D85D14φ: C2/C1C2 ⊆ Out D46D141128+D4:6D14:7C2448,1227
D46D148C2 = D86D14φ: C2/C1C2 ⊆ Out D46D141128-D4:6D14:8C2448,1228
D46D149C2 = D7×2+ 1+4φ: C2/C1C2 ⊆ Out D46D14568+D4:6D14:9C2448,1379
D46D1410C2 = D14.C24φ: C2/C1C2 ⊆ Out D46D141128-D4:6D14:10C2448,1380
D46D1411C2 = C14.C25φ: trivial image1124D4:6D14:11C2448,1378

Non-split extensions G=N.Q with N=D46D14 and Q=C2
extensionφ:Q→Out NdρLabelID
D46D14.1C2 = C23.5D28φ: C2/C1C2 ⊆ Out D46D141128-D4:6D14.1C2448,276
D46D14.2C2 = D28.1D4φ: C2/C1C2 ⊆ Out D46D141128-D4:6D14.2C2448,280
D46D14.3C2 = C22⋊C4⋊D14φ: C2/C1C2 ⊆ Out D46D141124D4:6D14.3C2448,587
D46D14.4C2 = C425D14φ: C2/C1C2 ⊆ Out D46D141124D4:6D14.4C2448,595

׿
×
𝔽