Copied to
clipboard

G = D813D14order 448 = 26·7

2nd semidirect product of D8 and D14 acting through Inn(D8)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D813D14, D28.28D4, C28.4C24, D5616C22, C56.40C23, D28.2C23, Dic14.28D4, Dic2814C22, Dic14.2C23, (D7×D8)⋊6C2, (C2×C8)⋊9D14, C72(D4○D8), (C2×D8)⋊12D7, (C14×D8)⋊3C2, C4.75(D4×D7), C7⋊D4.8D4, C7⋊C8.1C23, D83D76C2, D8⋊D75C2, (C2×D4)⋊14D14, (C2×C56)⋊3C22, D4⋊D71C22, C28.79(C2×D4), (D4×D7)⋊1C22, (C8×D7)⋊7C22, D567C23C2, D46D145C2, C4.4(C23×D7), D14.26(C2×D4), C4○D283C22, (C7×D8)⋊11C22, D4.D71C22, (C7×D4).2C23, D4.2(C22×D7), (C4×D7).2C23, C8.10(C22×D7), C22.20(D4×D7), D28.2C42C2, D4.D147C2, D42D71C22, (D4×C14)⋊20C22, C8⋊D713C22, C56⋊C214C22, Dic7.31(C2×D4), (C2×C28).521C23, C14.105(C22×D4), C4.Dic728C22, C2.78(C2×D4×D7), (C2×C14).394(C2×D4), (C2×C4).229(C22×D7), SmallGroup(448,1210)

Series: Derived Chief Lower central Upper central

C1C28 — D813D14
C1C7C14C28C4×D7C4○D28D46D14 — D813D14
C7C14C28 — D813D14
C1C2C2×C4C2×D8

Generators and relations for D813D14
 G = < a,b,c,d | a8=b2=c14=d2=1, bab=cac-1=a-1, ad=da, cbc-1=a6b, dbd=a4b, dcd=c-1 >

Subgroups: 1476 in 268 conjugacy classes, 99 normal (29 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, D4, D4, Q8, C23, D7, C14, C14, C2×C8, C2×C8, M4(2), D8, D8, SD16, Q16, C2×D4, C2×D4, C4○D4, Dic7, Dic7, C28, D14, D14, C2×C14, C2×C14, C8○D4, C2×D8, C2×D8, C4○D8, C8⋊C22, 2+ 1+4, C7⋊C8, C56, Dic14, Dic14, C4×D7, C4×D7, D28, D28, C2×Dic7, C7⋊D4, C7⋊D4, C2×C28, C7×D4, C7×D4, C22×D7, C22×C14, D4○D8, C8×D7, C8⋊D7, C56⋊C2, D56, Dic28, C4.Dic7, D4⋊D7, D4.D7, C2×C56, C7×D8, C4○D28, C4○D28, D4×D7, D4×D7, D42D7, D42D7, C2×C7⋊D4, D4×C14, D28.2C4, D567C2, D7×D8, D8⋊D7, D83D7, D4.D14, C14×D8, D46D14, D813D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C24, D14, C22×D4, C22×D7, D4○D8, D4×D7, C23×D7, C2×D4×D7, D813D14

Smallest permutation representation of D813D14
On 112 points
Generators in S112
(1 89 39 108 14 101 32 96)(2 97 33 102 8 109 40 90)(3 91 41 110 9 103 34 98)(4 85 35 104 10 111 42 92)(5 93 29 112 11 105 36 86)(6 87 37 106 12 99 30 94)(7 95 31 100 13 107 38 88)(15 58 53 80 25 73 46 65)(16 66 47 74 26 81 54 59)(17 60 55 82 27 75 48 67)(18 68 49 76 28 83 56 61)(19 62 43 84 22 77 50 69)(20 70 51 78 23 71 44 63)(21 64 45 72 24 79 52 57)
(1 59)(2 67)(3 61)(4 69)(5 63)(6 57)(7 65)(8 82)(9 76)(10 84)(11 78)(12 72)(13 80)(14 74)(15 88)(16 96)(17 90)(18 98)(19 92)(20 86)(21 94)(22 104)(23 112)(24 106)(25 100)(26 108)(27 102)(28 110)(29 71)(30 64)(31 73)(32 66)(33 75)(34 68)(35 77)(36 70)(37 79)(38 58)(39 81)(40 60)(41 83)(42 62)(43 111)(44 93)(45 99)(46 95)(47 101)(48 97)(49 103)(50 85)(51 105)(52 87)(53 107)(54 89)(55 109)(56 91)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 14)(2 13)(3 12)(4 11)(5 10)(6 9)(7 8)(15 17)(18 21)(19 20)(22 23)(24 28)(25 27)(29 42)(30 41)(31 40)(32 39)(33 38)(34 37)(35 36)(43 51)(44 50)(45 49)(46 48)(52 56)(53 55)(57 61)(58 60)(62 70)(63 69)(64 68)(65 67)(71 77)(72 76)(73 75)(78 84)(79 83)(80 82)(85 105)(86 104)(87 103)(88 102)(89 101)(90 100)(91 99)(92 112)(93 111)(94 110)(95 109)(96 108)(97 107)(98 106)

G:=sub<Sym(112)| (1,89,39,108,14,101,32,96)(2,97,33,102,8,109,40,90)(3,91,41,110,9,103,34,98)(4,85,35,104,10,111,42,92)(5,93,29,112,11,105,36,86)(6,87,37,106,12,99,30,94)(7,95,31,100,13,107,38,88)(15,58,53,80,25,73,46,65)(16,66,47,74,26,81,54,59)(17,60,55,82,27,75,48,67)(18,68,49,76,28,83,56,61)(19,62,43,84,22,77,50,69)(20,70,51,78,23,71,44,63)(21,64,45,72,24,79,52,57), (1,59)(2,67)(3,61)(4,69)(5,63)(6,57)(7,65)(8,82)(9,76)(10,84)(11,78)(12,72)(13,80)(14,74)(15,88)(16,96)(17,90)(18,98)(19,92)(20,86)(21,94)(22,104)(23,112)(24,106)(25,100)(26,108)(27,102)(28,110)(29,71)(30,64)(31,73)(32,66)(33,75)(34,68)(35,77)(36,70)(37,79)(38,58)(39,81)(40,60)(41,83)(42,62)(43,111)(44,93)(45,99)(46,95)(47,101)(48,97)(49,103)(50,85)(51,105)(52,87)(53,107)(54,89)(55,109)(56,91), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,14)(2,13)(3,12)(4,11)(5,10)(6,9)(7,8)(15,17)(18,21)(19,20)(22,23)(24,28)(25,27)(29,42)(30,41)(31,40)(32,39)(33,38)(34,37)(35,36)(43,51)(44,50)(45,49)(46,48)(52,56)(53,55)(57,61)(58,60)(62,70)(63,69)(64,68)(65,67)(71,77)(72,76)(73,75)(78,84)(79,83)(80,82)(85,105)(86,104)(87,103)(88,102)(89,101)(90,100)(91,99)(92,112)(93,111)(94,110)(95,109)(96,108)(97,107)(98,106)>;

G:=Group( (1,89,39,108,14,101,32,96)(2,97,33,102,8,109,40,90)(3,91,41,110,9,103,34,98)(4,85,35,104,10,111,42,92)(5,93,29,112,11,105,36,86)(6,87,37,106,12,99,30,94)(7,95,31,100,13,107,38,88)(15,58,53,80,25,73,46,65)(16,66,47,74,26,81,54,59)(17,60,55,82,27,75,48,67)(18,68,49,76,28,83,56,61)(19,62,43,84,22,77,50,69)(20,70,51,78,23,71,44,63)(21,64,45,72,24,79,52,57), (1,59)(2,67)(3,61)(4,69)(5,63)(6,57)(7,65)(8,82)(9,76)(10,84)(11,78)(12,72)(13,80)(14,74)(15,88)(16,96)(17,90)(18,98)(19,92)(20,86)(21,94)(22,104)(23,112)(24,106)(25,100)(26,108)(27,102)(28,110)(29,71)(30,64)(31,73)(32,66)(33,75)(34,68)(35,77)(36,70)(37,79)(38,58)(39,81)(40,60)(41,83)(42,62)(43,111)(44,93)(45,99)(46,95)(47,101)(48,97)(49,103)(50,85)(51,105)(52,87)(53,107)(54,89)(55,109)(56,91), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,14)(2,13)(3,12)(4,11)(5,10)(6,9)(7,8)(15,17)(18,21)(19,20)(22,23)(24,28)(25,27)(29,42)(30,41)(31,40)(32,39)(33,38)(34,37)(35,36)(43,51)(44,50)(45,49)(46,48)(52,56)(53,55)(57,61)(58,60)(62,70)(63,69)(64,68)(65,67)(71,77)(72,76)(73,75)(78,84)(79,83)(80,82)(85,105)(86,104)(87,103)(88,102)(89,101)(90,100)(91,99)(92,112)(93,111)(94,110)(95,109)(96,108)(97,107)(98,106) );

G=PermutationGroup([[(1,89,39,108,14,101,32,96),(2,97,33,102,8,109,40,90),(3,91,41,110,9,103,34,98),(4,85,35,104,10,111,42,92),(5,93,29,112,11,105,36,86),(6,87,37,106,12,99,30,94),(7,95,31,100,13,107,38,88),(15,58,53,80,25,73,46,65),(16,66,47,74,26,81,54,59),(17,60,55,82,27,75,48,67),(18,68,49,76,28,83,56,61),(19,62,43,84,22,77,50,69),(20,70,51,78,23,71,44,63),(21,64,45,72,24,79,52,57)], [(1,59),(2,67),(3,61),(4,69),(5,63),(6,57),(7,65),(8,82),(9,76),(10,84),(11,78),(12,72),(13,80),(14,74),(15,88),(16,96),(17,90),(18,98),(19,92),(20,86),(21,94),(22,104),(23,112),(24,106),(25,100),(26,108),(27,102),(28,110),(29,71),(30,64),(31,73),(32,66),(33,75),(34,68),(35,77),(36,70),(37,79),(38,58),(39,81),(40,60),(41,83),(42,62),(43,111),(44,93),(45,99),(46,95),(47,101),(48,97),(49,103),(50,85),(51,105),(52,87),(53,107),(54,89),(55,109),(56,91)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,14),(2,13),(3,12),(4,11),(5,10),(6,9),(7,8),(15,17),(18,21),(19,20),(22,23),(24,28),(25,27),(29,42),(30,41),(31,40),(32,39),(33,38),(34,37),(35,36),(43,51),(44,50),(45,49),(46,48),(52,56),(53,55),(57,61),(58,60),(62,70),(63,69),(64,68),(65,67),(71,77),(72,76),(73,75),(78,84),(79,83),(80,82),(85,105),(86,104),(87,103),(88,102),(89,101),(90,100),(91,99),(92,112),(93,111),(94,110),(95,109),(96,108),(97,107),(98,106)]])

64 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J4A4B4C4D4E4F7A7B7C8A8B8C8D8E14A···14I14J···14U28A···28F56A···56L
order122222222224444447778888814···1414···1428···2856···56
size112444414142828221414282822222428282···28···84···44···4

64 irreducible representations

dim11111111122222224444
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2D4D4D4D7D14D14D14D4○D8D4×D7D4×D7D813D14
kernelD813D14D28.2C4D567C2D7×D8D8⋊D7D83D7D4.D14C14×D8D46D14Dic14D28C7⋊D4C2×D8C2×C8D8C2×D4C7C4C22C1
# reps1112422121123312623312

Matrix representation of D813D14 in GL4(𝔽113) generated by

004626
00870
0100510
1323051
,
74847893
29398996
651032129
101745592
,
33331486
801045727
008180
00668
,
808000
93300
00104104
00349
G:=sub<GL(4,GF(113))| [0,0,0,13,0,0,100,23,46,87,51,0,26,0,0,51],[74,29,65,101,84,39,103,74,78,89,21,55,93,96,29,92],[33,80,0,0,33,104,0,0,14,57,81,66,86,27,80,8],[80,9,0,0,80,33,0,0,0,0,104,34,0,0,104,9] >;

D813D14 in GAP, Magma, Sage, TeX

D_8\rtimes_{13}D_{14}
% in TeX

G:=Group("D8:13D14");
// GroupNames label

G:=SmallGroup(448,1210);
// by ID

G=gap.SmallGroup(448,1210);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,477,185,438,235,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^14=d^2=1,b*a*b=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=a^6*b,d*b*d=a^4*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽