Copied to
clipboard

G = D85D14order 448 = 26·7

5th semidirect product of D8 and D14 acting via D14/D7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D85D14, SD163D14, D28.41D4, D562C22, C56.2C23, M4(2)⋊9D14, C28.21C24, Dic14.41D4, D28.14C23, Dic14.14C23, (D7×D8)⋊2C2, C74(D4○D8), C4○D43D14, C8⋊C224D7, C7⋊D4.4D4, (C2×D4)⋊15D14, D8⋊D73C2, D56⋊C22C2, C8⋊D142C2, D28.C41C2, C4.115(D4×D7), (D4×D7)⋊3C22, (C8×D7)⋊3C22, (C7×D8)⋊3C22, C7⋊C8.25C23, D48D147C2, D46D147C2, C8.2(C22×D7), D4⋊D714C22, D14.32(C2×D4), C28.242(C2×D4), C4○D288C22, C8⋊D73C22, C56⋊C23C22, Q8⋊D713C22, C22.14(D4×D7), C4.21(C23×D7), SD163D72C2, D4.8D143C2, D42D73C22, (D4×C14)⋊23C22, (C2×D28)⋊36C22, D4.D713C22, Dic7.37(C2×D4), Q82D73C22, (C7×SD16)⋊3C22, (C7×D4).14C23, C7⋊Q1612C22, D4.14(C22×D7), (C4×D7).13C23, Q8.14(C22×D7), (C7×Q8).14C23, (C2×C28).112C23, C14.122(C22×D4), (C7×M4(2))⋊3C22, C2.95(C2×D4×D7), (C2×D4⋊D7)⋊29C2, (C7×C8⋊C22)⋊3C2, (C2×C7⋊C8)⋊17C22, (C2×C14).67(C2×D4), (C7×C4○D4)⋊6C22, (C2×C4).96(C22×D7), SmallGroup(448,1227)

Series: Derived Chief Lower central Upper central

C1C28 — D85D14
C1C7C14C28C4×D7C4○D28D46D14 — D85D14
C7C14C28 — D85D14
C1C2C2×C4C8⋊C22

Generators and relations for D85D14
 G = < a,b,c,d | a8=b2=c14=d2=1, bab=a-1, cac-1=a5, dad=a3, bc=cb, dbd=a6b, dcd=c-1 >

Subgroups: 1548 in 268 conjugacy classes, 99 normal (45 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, D4, D4, D4, Q8, Q8, C23, D7, C14, C14, C2×C8, M4(2), M4(2), D8, D8, SD16, SD16, Q16, C2×D4, C2×D4, C4○D4, C4○D4, Dic7, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C8○D4, C2×D8, C4○D8, C8⋊C22, C8⋊C22, 2+ 1+4, C7⋊C8, C56, Dic14, C4×D7, C4×D7, D28, D28, D28, C2×Dic7, C7⋊D4, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×D4, C7×D4, C7×Q8, C22×D7, C22×C14, D4○D8, C8×D7, C8⋊D7, C56⋊C2, D56, C2×C7⋊C8, D4⋊D7, D4⋊D7, D4.D7, Q8⋊D7, C7⋊Q16, C7×M4(2), C7×D8, C7×SD16, C2×D28, C2×D28, C4○D28, C4○D28, D4×D7, D4×D7, D42D7, D42D7, Q82D7, C2×C7⋊D4, D4×C14, C7×C4○D4, D28.C4, C8⋊D14, D7×D8, D8⋊D7, D56⋊C2, SD163D7, C2×D4⋊D7, D4.8D14, C7×C8⋊C22, D46D14, D48D14, D85D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C24, D14, C22×D4, C22×D7, D4○D8, D4×D7, C23×D7, C2×D4×D7, D85D14

Smallest permutation representation of D85D14
On 112 points
Generators in S112
(1 64 85 30 110 50 23 77)(2 51 86 78 111 65 24 31)(3 66 87 32 112 52 25 79)(4 53 88 80 99 67 26 33)(5 68 89 34 100 54 27 81)(6 55 90 82 101 69 28 35)(7 70 91 36 102 56 15 83)(8 43 92 84 103 57 16 37)(9 58 93 38 104 44 17 71)(10 45 94 72 105 59 18 39)(11 60 95 40 106 46 19 73)(12 47 96 74 107 61 20 41)(13 62 97 42 108 48 21 75)(14 49 98 76 109 63 22 29)
(1 92)(2 93)(3 94)(4 95)(5 96)(6 97)(7 98)(8 85)(9 86)(10 87)(11 88)(12 89)(13 90)(14 91)(15 109)(16 110)(17 111)(18 112)(19 99)(20 100)(21 101)(22 102)(23 103)(24 104)(25 105)(26 106)(27 107)(28 108)(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)(43 64)(44 65)(45 66)(46 67)(47 68)(48 69)(49 70)(50 57)(51 58)(52 59)(53 60)(54 61)(55 62)(56 63)(71 78)(72 79)(73 80)(74 81)(75 82)(76 83)(77 84)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 63)(2 62)(3 61)(4 60)(5 59)(6 58)(7 57)(8 70)(9 69)(10 68)(11 67)(12 66)(13 65)(14 64)(15 37)(16 36)(17 35)(18 34)(19 33)(20 32)(21 31)(22 30)(23 29)(24 42)(25 41)(26 40)(27 39)(28 38)(43 102)(44 101)(45 100)(46 99)(47 112)(48 111)(49 110)(50 109)(51 108)(52 107)(53 106)(54 105)(55 104)(56 103)(71 90)(72 89)(73 88)(74 87)(75 86)(76 85)(77 98)(78 97)(79 96)(80 95)(81 94)(82 93)(83 92)(84 91)

G:=sub<Sym(112)| (1,64,85,30,110,50,23,77)(2,51,86,78,111,65,24,31)(3,66,87,32,112,52,25,79)(4,53,88,80,99,67,26,33)(5,68,89,34,100,54,27,81)(6,55,90,82,101,69,28,35)(7,70,91,36,102,56,15,83)(8,43,92,84,103,57,16,37)(9,58,93,38,104,44,17,71)(10,45,94,72,105,59,18,39)(11,60,95,40,106,46,19,73)(12,47,96,74,107,61,20,41)(13,62,97,42,108,48,21,75)(14,49,98,76,109,63,22,29), (1,92)(2,93)(3,94)(4,95)(5,96)(6,97)(7,98)(8,85)(9,86)(10,87)(11,88)(12,89)(13,90)(14,91)(15,109)(16,110)(17,111)(18,112)(19,99)(20,100)(21,101)(22,102)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,64)(44,65)(45,66)(46,67)(47,68)(48,69)(49,70)(50,57)(51,58)(52,59)(53,60)(54,61)(55,62)(56,63)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,63)(2,62)(3,61)(4,60)(5,59)(6,58)(7,57)(8,70)(9,69)(10,68)(11,67)(12,66)(13,65)(14,64)(15,37)(16,36)(17,35)(18,34)(19,33)(20,32)(21,31)(22,30)(23,29)(24,42)(25,41)(26,40)(27,39)(28,38)(43,102)(44,101)(45,100)(46,99)(47,112)(48,111)(49,110)(50,109)(51,108)(52,107)(53,106)(54,105)(55,104)(56,103)(71,90)(72,89)(73,88)(74,87)(75,86)(76,85)(77,98)(78,97)(79,96)(80,95)(81,94)(82,93)(83,92)(84,91)>;

G:=Group( (1,64,85,30,110,50,23,77)(2,51,86,78,111,65,24,31)(3,66,87,32,112,52,25,79)(4,53,88,80,99,67,26,33)(5,68,89,34,100,54,27,81)(6,55,90,82,101,69,28,35)(7,70,91,36,102,56,15,83)(8,43,92,84,103,57,16,37)(9,58,93,38,104,44,17,71)(10,45,94,72,105,59,18,39)(11,60,95,40,106,46,19,73)(12,47,96,74,107,61,20,41)(13,62,97,42,108,48,21,75)(14,49,98,76,109,63,22,29), (1,92)(2,93)(3,94)(4,95)(5,96)(6,97)(7,98)(8,85)(9,86)(10,87)(11,88)(12,89)(13,90)(14,91)(15,109)(16,110)(17,111)(18,112)(19,99)(20,100)(21,101)(22,102)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,64)(44,65)(45,66)(46,67)(47,68)(48,69)(49,70)(50,57)(51,58)(52,59)(53,60)(54,61)(55,62)(56,63)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,63)(2,62)(3,61)(4,60)(5,59)(6,58)(7,57)(8,70)(9,69)(10,68)(11,67)(12,66)(13,65)(14,64)(15,37)(16,36)(17,35)(18,34)(19,33)(20,32)(21,31)(22,30)(23,29)(24,42)(25,41)(26,40)(27,39)(28,38)(43,102)(44,101)(45,100)(46,99)(47,112)(48,111)(49,110)(50,109)(51,108)(52,107)(53,106)(54,105)(55,104)(56,103)(71,90)(72,89)(73,88)(74,87)(75,86)(76,85)(77,98)(78,97)(79,96)(80,95)(81,94)(82,93)(83,92)(84,91) );

G=PermutationGroup([[(1,64,85,30,110,50,23,77),(2,51,86,78,111,65,24,31),(3,66,87,32,112,52,25,79),(4,53,88,80,99,67,26,33),(5,68,89,34,100,54,27,81),(6,55,90,82,101,69,28,35),(7,70,91,36,102,56,15,83),(8,43,92,84,103,57,16,37),(9,58,93,38,104,44,17,71),(10,45,94,72,105,59,18,39),(11,60,95,40,106,46,19,73),(12,47,96,74,107,61,20,41),(13,62,97,42,108,48,21,75),(14,49,98,76,109,63,22,29)], [(1,92),(2,93),(3,94),(4,95),(5,96),(6,97),(7,98),(8,85),(9,86),(10,87),(11,88),(12,89),(13,90),(14,91),(15,109),(16,110),(17,111),(18,112),(19,99),(20,100),(21,101),(22,102),(23,103),(24,104),(25,105),(26,106),(27,107),(28,108),(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42),(43,64),(44,65),(45,66),(46,67),(47,68),(48,69),(49,70),(50,57),(51,58),(52,59),(53,60),(54,61),(55,62),(56,63),(71,78),(72,79),(73,80),(74,81),(75,82),(76,83),(77,84)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,63),(2,62),(3,61),(4,60),(5,59),(6,58),(7,57),(8,70),(9,69),(10,68),(11,67),(12,66),(13,65),(14,64),(15,37),(16,36),(17,35),(18,34),(19,33),(20,32),(21,31),(22,30),(23,29),(24,42),(25,41),(26,40),(27,39),(28,38),(43,102),(44,101),(45,100),(46,99),(47,112),(48,111),(49,110),(50,109),(51,108),(52,107),(53,106),(54,105),(55,104),(56,103),(71,90),(72,89),(73,88),(74,87),(75,86),(76,85),(77,98),(78,97),(79,96),(80,95),(81,94),(82,93),(83,92),(84,91)]])

55 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J4A4B4C4D4E4F7A7B7C8A8B8C8D8E14A14B14C14D14E14F14G···14O28A···28F28G28H28I56A···56F
order122222222224444447778888814141414141414···1428···2828282856···56
size1124441414282828224141428222441414282224448···84···48888···8

55 irreducible representations

dim1111111111112222222224448
type+++++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D4D4D7D14D14D14D14D14D4○D8D4×D7D4×D7D85D14
kernelD85D14D28.C4C8⋊D14D7×D8D8⋊D7D56⋊C2SD163D7C2×D4⋊D7D4.8D14C7×C8⋊C22D46D14D48D14Dic14D28C7⋊D4C8⋊C22M4(2)D8SD16C2×D4C4○D4C7C4C22C1
# reps1112222111111123366332333

Matrix representation of D85D14 in GL8(𝔽113)

00100000
00010000
1120000000
0112000000
00006899138
00008381611
000089596969
0000545010251
,
1120000000
0112000000
00100000
00010000
00003110640
000086700111
0000719711067
00008844043
,
10433000000
8033000000
00104330000
0080330000
000032396444
0000274302
0000817411051
000061754041
,
0001120000
0011200000
0112000000
1120000000
0000010900
000028000
000073606299
0000723510551

G:=sub<GL(8,GF(113))| [0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,68,8,89,54,0,0,0,0,99,38,59,50,0,0,0,0,13,16,69,102,0,0,0,0,8,11,69,51],[112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,86,71,88,0,0,0,0,110,70,97,4,0,0,0,0,64,0,110,40,0,0,0,0,0,111,67,43],[104,80,0,0,0,0,0,0,33,33,0,0,0,0,0,0,0,0,104,80,0,0,0,0,0,0,33,33,0,0,0,0,0,0,0,0,32,27,81,61,0,0,0,0,39,43,74,75,0,0,0,0,64,0,110,40,0,0,0,0,44,2,51,41],[0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,0,0,0,0,28,73,72,0,0,0,0,109,0,60,35,0,0,0,0,0,0,62,105,0,0,0,0,0,0,99,51] >;

D85D14 in GAP, Magma, Sage, TeX

D_8\rtimes_5D_{14}
% in TeX

G:=Group("D8:5D14");
// GroupNames label

G:=SmallGroup(448,1227);
// by ID

G=gap.SmallGroup(448,1227);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,477,570,185,438,235,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^14=d^2=1,b*a*b=a^-1,c*a*c^-1=a^5,d*a*d=a^3,b*c=c*b,d*b*d=a^6*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽