Copied to
clipboard

G = C2×C28.23D4order 448 = 26·7

Direct product of C2 and C28.23D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C28.23D4, (C2×Q8)⋊29D14, (C22×Q8)⋊6D7, (C2×C28).215D4, C28.259(C2×D4), D14⋊C474C22, C144(C4.4D4), (Q8×C14)⋊36C22, (C2×C28).646C23, (C2×C14).306C24, (C4×Dic7)⋊69C22, (C22×D28).19C2, C14.154(C22×D4), (C22×C4).385D14, (C2×D28).278C22, (C23×D7).78C22, C23.342(C22×D7), C22.317(C23×D7), (C22×C14).424C23, (C22×C28).439C22, C22.40(Q82D7), (C2×Dic7).289C23, (C22×D7).133C23, (C22×Dic7).234C22, (Q8×C2×C14)⋊5C2, C75(C2×C4.4D4), (C2×C4×Dic7)⋊13C2, C4.28(C2×C7⋊D4), (C2×D14⋊C4)⋊43C2, C14.128(C2×C4○D4), (C2×C14).589(C2×D4), C2.35(C2×Q82D7), C2.27(C22×C7⋊D4), (C2×C4).157(C7⋊D4), (C2×C4).243(C22×D7), C22.117(C2×C7⋊D4), (C2×C14).201(C4○D4), SmallGroup(448,1267)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C2×C28.23D4
C1C7C14C2×C14C22×D7C23×D7C22×D28 — C2×C28.23D4
C7C2×C14 — C2×C28.23D4
C1C23C22×Q8

Generators and relations for C2×C28.23D4
 G = < a,b,c,d | a2=b28=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=b13, dbd=b-1, dcd=b14c-1 >

Subgroups: 1652 in 330 conjugacy classes, 127 normal (15 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C42, C22⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×Q8, C2×Q8, C24, Dic7, C28, C28, D14, C2×C14, C2×C14, C2×C42, C2×C22⋊C4, C4.4D4, C22×D4, C22×Q8, D28, C2×Dic7, C2×Dic7, C2×C28, C2×C28, C7×Q8, C22×D7, C22×D7, C22×C14, C2×C4.4D4, C4×Dic7, D14⋊C4, C2×D28, C2×D28, C22×Dic7, C22×C28, C22×C28, Q8×C14, Q8×C14, C23×D7, C2×C4×Dic7, C2×D14⋊C4, C28.23D4, C22×D28, Q8×C2×C14, C2×C28.23D4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, C24, D14, C4.4D4, C22×D4, C2×C4○D4, C7⋊D4, C22×D7, C2×C4.4D4, Q82D7, C2×C7⋊D4, C23×D7, C28.23D4, C2×Q82D7, C22×C7⋊D4, C2×C28.23D4

Smallest permutation representation of C2×C28.23D4
On 224 points
Generators in S224
(1 182)(2 183)(3 184)(4 185)(5 186)(6 187)(7 188)(8 189)(9 190)(10 191)(11 192)(12 193)(13 194)(14 195)(15 196)(16 169)(17 170)(18 171)(19 172)(20 173)(21 174)(22 175)(23 176)(24 177)(25 178)(26 179)(27 180)(28 181)(29 127)(30 128)(31 129)(32 130)(33 131)(34 132)(35 133)(36 134)(37 135)(38 136)(39 137)(40 138)(41 139)(42 140)(43 113)(44 114)(45 115)(46 116)(47 117)(48 118)(49 119)(50 120)(51 121)(52 122)(53 123)(54 124)(55 125)(56 126)(57 201)(58 202)(59 203)(60 204)(61 205)(62 206)(63 207)(64 208)(65 209)(66 210)(67 211)(68 212)(69 213)(70 214)(71 215)(72 216)(73 217)(74 218)(75 219)(76 220)(77 221)(78 222)(79 223)(80 224)(81 197)(82 198)(83 199)(84 200)(85 143)(86 144)(87 145)(88 146)(89 147)(90 148)(91 149)(92 150)(93 151)(94 152)(95 153)(96 154)(97 155)(98 156)(99 157)(100 158)(101 159)(102 160)(103 161)(104 162)(105 163)(106 164)(107 165)(108 166)(109 167)(110 168)(111 141)(112 142)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 161 80 53)(2 146 81 38)(3 159 82 51)(4 144 83 36)(5 157 84 49)(6 142 57 34)(7 155 58 47)(8 168 59 32)(9 153 60 45)(10 166 61 30)(11 151 62 43)(12 164 63 56)(13 149 64 41)(14 162 65 54)(15 147 66 39)(16 160 67 52)(17 145 68 37)(18 158 69 50)(19 143 70 35)(20 156 71 48)(21 141 72 33)(22 154 73 46)(23 167 74 31)(24 152 75 44)(25 165 76 29)(26 150 77 42)(27 163 78 55)(28 148 79 40)(85 214 133 172)(86 199 134 185)(87 212 135 170)(88 197 136 183)(89 210 137 196)(90 223 138 181)(91 208 139 194)(92 221 140 179)(93 206 113 192)(94 219 114 177)(95 204 115 190)(96 217 116 175)(97 202 117 188)(98 215 118 173)(99 200 119 186)(100 213 120 171)(101 198 121 184)(102 211 122 169)(103 224 123 182)(104 209 124 195)(105 222 125 180)(106 207 126 193)(107 220 127 178)(108 205 128 191)(109 218 129 176)(110 203 130 189)(111 216 131 174)(112 201 132 187)
(1 203)(2 202)(3 201)(4 200)(5 199)(6 198)(7 197)(8 224)(9 223)(10 222)(11 221)(12 220)(13 219)(14 218)(15 217)(16 216)(17 215)(18 214)(19 213)(20 212)(21 211)(22 210)(23 209)(24 208)(25 207)(26 206)(27 205)(28 204)(29 140)(30 139)(31 138)(32 137)(33 136)(34 135)(35 134)(36 133)(37 132)(38 131)(39 130)(40 129)(41 128)(42 127)(43 126)(44 125)(45 124)(46 123)(47 122)(48 121)(49 120)(50 119)(51 118)(52 117)(53 116)(54 115)(55 114)(56 113)(57 184)(58 183)(59 182)(60 181)(61 180)(62 179)(63 178)(64 177)(65 176)(66 175)(67 174)(68 173)(69 172)(70 171)(71 170)(72 169)(73 196)(74 195)(75 194)(76 193)(77 192)(78 191)(79 190)(80 189)(81 188)(82 187)(83 186)(84 185)(85 144)(86 143)(87 142)(88 141)(89 168)(90 167)(91 166)(92 165)(93 164)(94 163)(95 162)(96 161)(97 160)(98 159)(99 158)(100 157)(101 156)(102 155)(103 154)(104 153)(105 152)(106 151)(107 150)(108 149)(109 148)(110 147)(111 146)(112 145)

G:=sub<Sym(224)| (1,182)(2,183)(3,184)(4,185)(5,186)(6,187)(7,188)(8,189)(9,190)(10,191)(11,192)(12,193)(13,194)(14,195)(15,196)(16,169)(17,170)(18,171)(19,172)(20,173)(21,174)(22,175)(23,176)(24,177)(25,178)(26,179)(27,180)(28,181)(29,127)(30,128)(31,129)(32,130)(33,131)(34,132)(35,133)(36,134)(37,135)(38,136)(39,137)(40,138)(41,139)(42,140)(43,113)(44,114)(45,115)(46,116)(47,117)(48,118)(49,119)(50,120)(51,121)(52,122)(53,123)(54,124)(55,125)(56,126)(57,201)(58,202)(59,203)(60,204)(61,205)(62,206)(63,207)(64,208)(65,209)(66,210)(67,211)(68,212)(69,213)(70,214)(71,215)(72,216)(73,217)(74,218)(75,219)(76,220)(77,221)(78,222)(79,223)(80,224)(81,197)(82,198)(83,199)(84,200)(85,143)(86,144)(87,145)(88,146)(89,147)(90,148)(91,149)(92,150)(93,151)(94,152)(95,153)(96,154)(97,155)(98,156)(99,157)(100,158)(101,159)(102,160)(103,161)(104,162)(105,163)(106,164)(107,165)(108,166)(109,167)(110,168)(111,141)(112,142), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,161,80,53)(2,146,81,38)(3,159,82,51)(4,144,83,36)(5,157,84,49)(6,142,57,34)(7,155,58,47)(8,168,59,32)(9,153,60,45)(10,166,61,30)(11,151,62,43)(12,164,63,56)(13,149,64,41)(14,162,65,54)(15,147,66,39)(16,160,67,52)(17,145,68,37)(18,158,69,50)(19,143,70,35)(20,156,71,48)(21,141,72,33)(22,154,73,46)(23,167,74,31)(24,152,75,44)(25,165,76,29)(26,150,77,42)(27,163,78,55)(28,148,79,40)(85,214,133,172)(86,199,134,185)(87,212,135,170)(88,197,136,183)(89,210,137,196)(90,223,138,181)(91,208,139,194)(92,221,140,179)(93,206,113,192)(94,219,114,177)(95,204,115,190)(96,217,116,175)(97,202,117,188)(98,215,118,173)(99,200,119,186)(100,213,120,171)(101,198,121,184)(102,211,122,169)(103,224,123,182)(104,209,124,195)(105,222,125,180)(106,207,126,193)(107,220,127,178)(108,205,128,191)(109,218,129,176)(110,203,130,189)(111,216,131,174)(112,201,132,187), (1,203)(2,202)(3,201)(4,200)(5,199)(6,198)(7,197)(8,224)(9,223)(10,222)(11,221)(12,220)(13,219)(14,218)(15,217)(16,216)(17,215)(18,214)(19,213)(20,212)(21,211)(22,210)(23,209)(24,208)(25,207)(26,206)(27,205)(28,204)(29,140)(30,139)(31,138)(32,137)(33,136)(34,135)(35,134)(36,133)(37,132)(38,131)(39,130)(40,129)(41,128)(42,127)(43,126)(44,125)(45,124)(46,123)(47,122)(48,121)(49,120)(50,119)(51,118)(52,117)(53,116)(54,115)(55,114)(56,113)(57,184)(58,183)(59,182)(60,181)(61,180)(62,179)(63,178)(64,177)(65,176)(66,175)(67,174)(68,173)(69,172)(70,171)(71,170)(72,169)(73,196)(74,195)(75,194)(76,193)(77,192)(78,191)(79,190)(80,189)(81,188)(82,187)(83,186)(84,185)(85,144)(86,143)(87,142)(88,141)(89,168)(90,167)(91,166)(92,165)(93,164)(94,163)(95,162)(96,161)(97,160)(98,159)(99,158)(100,157)(101,156)(102,155)(103,154)(104,153)(105,152)(106,151)(107,150)(108,149)(109,148)(110,147)(111,146)(112,145)>;

G:=Group( (1,182)(2,183)(3,184)(4,185)(5,186)(6,187)(7,188)(8,189)(9,190)(10,191)(11,192)(12,193)(13,194)(14,195)(15,196)(16,169)(17,170)(18,171)(19,172)(20,173)(21,174)(22,175)(23,176)(24,177)(25,178)(26,179)(27,180)(28,181)(29,127)(30,128)(31,129)(32,130)(33,131)(34,132)(35,133)(36,134)(37,135)(38,136)(39,137)(40,138)(41,139)(42,140)(43,113)(44,114)(45,115)(46,116)(47,117)(48,118)(49,119)(50,120)(51,121)(52,122)(53,123)(54,124)(55,125)(56,126)(57,201)(58,202)(59,203)(60,204)(61,205)(62,206)(63,207)(64,208)(65,209)(66,210)(67,211)(68,212)(69,213)(70,214)(71,215)(72,216)(73,217)(74,218)(75,219)(76,220)(77,221)(78,222)(79,223)(80,224)(81,197)(82,198)(83,199)(84,200)(85,143)(86,144)(87,145)(88,146)(89,147)(90,148)(91,149)(92,150)(93,151)(94,152)(95,153)(96,154)(97,155)(98,156)(99,157)(100,158)(101,159)(102,160)(103,161)(104,162)(105,163)(106,164)(107,165)(108,166)(109,167)(110,168)(111,141)(112,142), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,161,80,53)(2,146,81,38)(3,159,82,51)(4,144,83,36)(5,157,84,49)(6,142,57,34)(7,155,58,47)(8,168,59,32)(9,153,60,45)(10,166,61,30)(11,151,62,43)(12,164,63,56)(13,149,64,41)(14,162,65,54)(15,147,66,39)(16,160,67,52)(17,145,68,37)(18,158,69,50)(19,143,70,35)(20,156,71,48)(21,141,72,33)(22,154,73,46)(23,167,74,31)(24,152,75,44)(25,165,76,29)(26,150,77,42)(27,163,78,55)(28,148,79,40)(85,214,133,172)(86,199,134,185)(87,212,135,170)(88,197,136,183)(89,210,137,196)(90,223,138,181)(91,208,139,194)(92,221,140,179)(93,206,113,192)(94,219,114,177)(95,204,115,190)(96,217,116,175)(97,202,117,188)(98,215,118,173)(99,200,119,186)(100,213,120,171)(101,198,121,184)(102,211,122,169)(103,224,123,182)(104,209,124,195)(105,222,125,180)(106,207,126,193)(107,220,127,178)(108,205,128,191)(109,218,129,176)(110,203,130,189)(111,216,131,174)(112,201,132,187), (1,203)(2,202)(3,201)(4,200)(5,199)(6,198)(7,197)(8,224)(9,223)(10,222)(11,221)(12,220)(13,219)(14,218)(15,217)(16,216)(17,215)(18,214)(19,213)(20,212)(21,211)(22,210)(23,209)(24,208)(25,207)(26,206)(27,205)(28,204)(29,140)(30,139)(31,138)(32,137)(33,136)(34,135)(35,134)(36,133)(37,132)(38,131)(39,130)(40,129)(41,128)(42,127)(43,126)(44,125)(45,124)(46,123)(47,122)(48,121)(49,120)(50,119)(51,118)(52,117)(53,116)(54,115)(55,114)(56,113)(57,184)(58,183)(59,182)(60,181)(61,180)(62,179)(63,178)(64,177)(65,176)(66,175)(67,174)(68,173)(69,172)(70,171)(71,170)(72,169)(73,196)(74,195)(75,194)(76,193)(77,192)(78,191)(79,190)(80,189)(81,188)(82,187)(83,186)(84,185)(85,144)(86,143)(87,142)(88,141)(89,168)(90,167)(91,166)(92,165)(93,164)(94,163)(95,162)(96,161)(97,160)(98,159)(99,158)(100,157)(101,156)(102,155)(103,154)(104,153)(105,152)(106,151)(107,150)(108,149)(109,148)(110,147)(111,146)(112,145) );

G=PermutationGroup([[(1,182),(2,183),(3,184),(4,185),(5,186),(6,187),(7,188),(8,189),(9,190),(10,191),(11,192),(12,193),(13,194),(14,195),(15,196),(16,169),(17,170),(18,171),(19,172),(20,173),(21,174),(22,175),(23,176),(24,177),(25,178),(26,179),(27,180),(28,181),(29,127),(30,128),(31,129),(32,130),(33,131),(34,132),(35,133),(36,134),(37,135),(38,136),(39,137),(40,138),(41,139),(42,140),(43,113),(44,114),(45,115),(46,116),(47,117),(48,118),(49,119),(50,120),(51,121),(52,122),(53,123),(54,124),(55,125),(56,126),(57,201),(58,202),(59,203),(60,204),(61,205),(62,206),(63,207),(64,208),(65,209),(66,210),(67,211),(68,212),(69,213),(70,214),(71,215),(72,216),(73,217),(74,218),(75,219),(76,220),(77,221),(78,222),(79,223),(80,224),(81,197),(82,198),(83,199),(84,200),(85,143),(86,144),(87,145),(88,146),(89,147),(90,148),(91,149),(92,150),(93,151),(94,152),(95,153),(96,154),(97,155),(98,156),(99,157),(100,158),(101,159),(102,160),(103,161),(104,162),(105,163),(106,164),(107,165),(108,166),(109,167),(110,168),(111,141),(112,142)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,161,80,53),(2,146,81,38),(3,159,82,51),(4,144,83,36),(5,157,84,49),(6,142,57,34),(7,155,58,47),(8,168,59,32),(9,153,60,45),(10,166,61,30),(11,151,62,43),(12,164,63,56),(13,149,64,41),(14,162,65,54),(15,147,66,39),(16,160,67,52),(17,145,68,37),(18,158,69,50),(19,143,70,35),(20,156,71,48),(21,141,72,33),(22,154,73,46),(23,167,74,31),(24,152,75,44),(25,165,76,29),(26,150,77,42),(27,163,78,55),(28,148,79,40),(85,214,133,172),(86,199,134,185),(87,212,135,170),(88,197,136,183),(89,210,137,196),(90,223,138,181),(91,208,139,194),(92,221,140,179),(93,206,113,192),(94,219,114,177),(95,204,115,190),(96,217,116,175),(97,202,117,188),(98,215,118,173),(99,200,119,186),(100,213,120,171),(101,198,121,184),(102,211,122,169),(103,224,123,182),(104,209,124,195),(105,222,125,180),(106,207,126,193),(107,220,127,178),(108,205,128,191),(109,218,129,176),(110,203,130,189),(111,216,131,174),(112,201,132,187)], [(1,203),(2,202),(3,201),(4,200),(5,199),(6,198),(7,197),(8,224),(9,223),(10,222),(11,221),(12,220),(13,219),(14,218),(15,217),(16,216),(17,215),(18,214),(19,213),(20,212),(21,211),(22,210),(23,209),(24,208),(25,207),(26,206),(27,205),(28,204),(29,140),(30,139),(31,138),(32,137),(33,136),(34,135),(35,134),(36,133),(37,132),(38,131),(39,130),(40,129),(41,128),(42,127),(43,126),(44,125),(45,124),(46,123),(47,122),(48,121),(49,120),(50,119),(51,118),(52,117),(53,116),(54,115),(55,114),(56,113),(57,184),(58,183),(59,182),(60,181),(61,180),(62,179),(63,178),(64,177),(65,176),(66,175),(67,174),(68,173),(69,172),(70,171),(71,170),(72,169),(73,196),(74,195),(75,194),(76,193),(77,192),(78,191),(79,190),(80,189),(81,188),(82,187),(83,186),(84,185),(85,144),(86,143),(87,142),(88,141),(89,168),(90,167),(91,166),(92,165),(93,164),(94,163),(95,162),(96,161),(97,160),(98,159),(99,158),(100,157),(101,156),(102,155),(103,154),(104,153),(105,152),(106,151),(107,150),(108,149),(109,148),(110,147),(111,146),(112,145)]])

88 conjugacy classes

class 1 2A···2G2H2I2J2K4A4B4C4D4E4F4G4H4I···4P7A7B7C14A···14U28A···28AJ
order12···22222444444444···477714···1428···28
size11···1282828282222444414···142222···24···4

88 irreducible representations

dim1111112222224
type+++++++++++
imageC1C2C2C2C2C2D4D7C4○D4D14D14C7⋊D4Q82D7
kernelC2×C28.23D4C2×C4×Dic7C2×D14⋊C4C28.23D4C22×D28Q8×C2×C14C2×C28C22×Q8C2×C14C22×C4C2×Q8C2×C4C22
# reps1148114389122412

Matrix representation of C2×C28.23D4 in GL6(𝔽29)

2800000
0280000
0028000
0002800
000010
000001
,
070000
4110000
00232700
004600
0000223
0000190
,
070000
2500000
0012000
0001200
00002028
0000249
,
0220000
400000
00232700
003600
000018
0000028

G:=sub<GL(6,GF(29))| [28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,4,0,0,0,0,7,11,0,0,0,0,0,0,23,4,0,0,0,0,27,6,0,0,0,0,0,0,22,19,0,0,0,0,3,0],[0,25,0,0,0,0,7,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,20,24,0,0,0,0,28,9],[0,4,0,0,0,0,22,0,0,0,0,0,0,0,23,3,0,0,0,0,27,6,0,0,0,0,0,0,1,0,0,0,0,0,8,28] >;

C2×C28.23D4 in GAP, Magma, Sage, TeX

C_2\times C_{28}._{23}D_4
% in TeX

G:=Group("C2xC28.23D4");
// GroupNames label

G:=SmallGroup(448,1267);
// by ID

G=gap.SmallGroup(448,1267);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,758,184,675,297,136,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^28=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^13,d*b*d=b^-1,d*c*d=b^14*c^-1>;
// generators/relations

׿
×
𝔽