Copied to
clipboard

G = A4×D19order 456 = 23·3·19

Direct product of A4 and D19

direct product, metabelian, soluble, monomial, A-group

Aliases: A4×D19, C193(C2×A4), (C2×C38)⋊1C6, C22⋊(C3×D19), (A4×C19)⋊2C2, (C22×D19)⋊1C3, SmallGroup(456,45)

Series: Derived Chief Lower central Upper central

C1C2×C38 — A4×D19
C1C19C2×C38A4×C19 — A4×D19
C2×C38 — A4×D19
C1

Generators and relations for A4×D19
 G = < a,b,c,d,e | a2=b2=c3=d19=e2=1, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

3C2
19C2
57C2
4C3
57C22
57C22
76C6
3C38
3D19
4C57
19C23
3D38
3D38
4C3×D19
19C2×A4

Smallest permutation representation of A4×D19
On 76 points
Generators in S76
(1 20)(2 21)(3 22)(4 23)(5 24)(6 25)(7 26)(8 27)(9 28)(10 29)(11 30)(12 31)(13 32)(14 33)(15 34)(16 35)(17 36)(18 37)(19 38)(39 66)(40 67)(41 68)(42 69)(43 70)(44 71)(45 72)(46 73)(47 74)(48 75)(49 76)(50 58)(51 59)(52 60)(53 61)(54 62)(55 63)(56 64)(57 65)
(1 46)(2 47)(3 48)(4 49)(5 50)(6 51)(7 52)(8 53)(9 54)(10 55)(11 56)(12 57)(13 39)(14 40)(15 41)(16 42)(17 43)(18 44)(19 45)(20 73)(21 74)(22 75)(23 76)(24 58)(25 59)(26 60)(27 61)(28 62)(29 63)(30 64)(31 65)(32 66)(33 67)(34 68)(35 69)(36 70)(37 71)(38 72)
(20 46 73)(21 47 74)(22 48 75)(23 49 76)(24 50 58)(25 51 59)(26 52 60)(27 53 61)(28 54 62)(29 55 63)(30 56 64)(31 57 65)(32 39 66)(33 40 67)(34 41 68)(35 42 69)(36 43 70)(37 44 71)(38 45 72)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57)(58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)
(1 19)(2 18)(3 17)(4 16)(5 15)(6 14)(7 13)(8 12)(9 11)(20 38)(21 37)(22 36)(23 35)(24 34)(25 33)(26 32)(27 31)(28 30)(39 52)(40 51)(41 50)(42 49)(43 48)(44 47)(45 46)(53 57)(54 56)(58 68)(59 67)(60 66)(61 65)(62 64)(69 76)(70 75)(71 74)(72 73)

G:=sub<Sym(76)| (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64)(57,65), (1,46)(2,47)(3,48)(4,49)(5,50)(6,51)(7,52)(8,53)(9,54)(10,55)(11,56)(12,57)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,73)(21,74)(22,75)(23,76)(24,58)(25,59)(26,60)(27,61)(28,62)(29,63)(30,64)(31,65)(32,66)(33,67)(34,68)(35,69)(36,70)(37,71)(38,72), (20,46,73)(21,47,74)(22,48,75)(23,49,76)(24,50,58)(25,51,59)(26,52,60)(27,53,61)(28,54,62)(29,55,63)(30,56,64)(31,57,65)(32,39,66)(33,40,67)(34,41,68)(35,42,69)(36,43,70)(37,44,71)(38,45,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76), (1,19)(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11)(20,38)(21,37)(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(28,30)(39,52)(40,51)(41,50)(42,49)(43,48)(44,47)(45,46)(53,57)(54,56)(58,68)(59,67)(60,66)(61,65)(62,64)(69,76)(70,75)(71,74)(72,73)>;

G:=Group( (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64)(57,65), (1,46)(2,47)(3,48)(4,49)(5,50)(6,51)(7,52)(8,53)(9,54)(10,55)(11,56)(12,57)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,73)(21,74)(22,75)(23,76)(24,58)(25,59)(26,60)(27,61)(28,62)(29,63)(30,64)(31,65)(32,66)(33,67)(34,68)(35,69)(36,70)(37,71)(38,72), (20,46,73)(21,47,74)(22,48,75)(23,49,76)(24,50,58)(25,51,59)(26,52,60)(27,53,61)(28,54,62)(29,55,63)(30,56,64)(31,57,65)(32,39,66)(33,40,67)(34,41,68)(35,42,69)(36,43,70)(37,44,71)(38,45,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76), (1,19)(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11)(20,38)(21,37)(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(28,30)(39,52)(40,51)(41,50)(42,49)(43,48)(44,47)(45,46)(53,57)(54,56)(58,68)(59,67)(60,66)(61,65)(62,64)(69,76)(70,75)(71,74)(72,73) );

G=PermutationGroup([[(1,20),(2,21),(3,22),(4,23),(5,24),(6,25),(7,26),(8,27),(9,28),(10,29),(11,30),(12,31),(13,32),(14,33),(15,34),(16,35),(17,36),(18,37),(19,38),(39,66),(40,67),(41,68),(42,69),(43,70),(44,71),(45,72),(46,73),(47,74),(48,75),(49,76),(50,58),(51,59),(52,60),(53,61),(54,62),(55,63),(56,64),(57,65)], [(1,46),(2,47),(3,48),(4,49),(5,50),(6,51),(7,52),(8,53),(9,54),(10,55),(11,56),(12,57),(13,39),(14,40),(15,41),(16,42),(17,43),(18,44),(19,45),(20,73),(21,74),(22,75),(23,76),(24,58),(25,59),(26,60),(27,61),(28,62),(29,63),(30,64),(31,65),(32,66),(33,67),(34,68),(35,69),(36,70),(37,71),(38,72)], [(20,46,73),(21,47,74),(22,48,75),(23,49,76),(24,50,58),(25,51,59),(26,52,60),(27,53,61),(28,54,62),(29,55,63),(30,56,64),(31,57,65),(32,39,66),(33,40,67),(34,41,68),(35,42,69),(36,43,70),(37,44,71),(38,45,72)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57),(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)], [(1,19),(2,18),(3,17),(4,16),(5,15),(6,14),(7,13),(8,12),(9,11),(20,38),(21,37),(22,36),(23,35),(24,34),(25,33),(26,32),(27,31),(28,30),(39,52),(40,51),(41,50),(42,49),(43,48),(44,47),(45,46),(53,57),(54,56),(58,68),(59,67),(60,66),(61,65),(62,64),(69,76),(70,75),(71,74),(72,73)]])

44 conjugacy classes

class 1 2A2B2C3A3B6A6B19A···19I38A···38I57A···57R
order1222336619···1938···3857···57
size1319574476762···26···68···8

44 irreducible representations

dim111122336
type++++++
imageC1C2C3C6D19C3×D19A4C2×A4A4×D19
kernelA4×D19A4×C19C22×D19C2×C38A4C22D19C19C1
# reps1122918119

Matrix representation of A4×D19 in GL5(𝔽229)

10000
01000
0022800
00227228104
004401
,
10000
01000
00228227104
0002280
000441
,
940000
094000
00228228104
00100
00001
,
01000
228102000
00100
00010
00001
,
01000
10000
00100
00010
00001

G:=sub<GL(5,GF(229))| [1,0,0,0,0,0,1,0,0,0,0,0,228,227,44,0,0,0,228,0,0,0,0,104,1],[1,0,0,0,0,0,1,0,0,0,0,0,228,0,0,0,0,227,228,44,0,0,104,0,1],[94,0,0,0,0,0,94,0,0,0,0,0,228,1,0,0,0,228,0,0,0,0,104,0,1],[0,228,0,0,0,1,102,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1] >;

A4×D19 in GAP, Magma, Sage, TeX

A_4\times D_{19}
% in TeX

G:=Group("A4xD19");
// GroupNames label

G:=SmallGroup(456,45);
// by ID

G=gap.SmallGroup(456,45);
# by ID

G:=PCGroup([5,-2,-3,-2,2,-19,142,68,10804]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^19=e^2=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

Export

Subgroup lattice of A4×D19 in TeX

׿
×
𝔽