metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: C113⋊C4, D113.C2, SmallGroup(452,3)
Series: Derived ►Chief ►Lower central ►Upper central
C113 — C113⋊C4 |
Generators and relations for C113⋊C4
G = < a,b | a113=b4=1, bab-1=a15 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113)
(2 99 113 16)(3 84 112 31)(4 69 111 46)(5 54 110 61)(6 39 109 76)(7 24 108 91)(8 9 107 106)(10 92 105 23)(11 77 104 38)(12 62 103 53)(13 47 102 68)(14 32 101 83)(15 17 100 98)(18 85 97 30)(19 70 96 45)(20 55 95 60)(21 40 94 75)(22 25 93 90)(26 78 89 37)(27 63 88 52)(28 48 87 67)(29 33 86 82)(34 71 81 44)(35 56 80 59)(36 41 79 74)(42 64 73 51)(43 49 72 66)(50 57 65 58)
G:=sub<Sym(113)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113), (2,99,113,16)(3,84,112,31)(4,69,111,46)(5,54,110,61)(6,39,109,76)(7,24,108,91)(8,9,107,106)(10,92,105,23)(11,77,104,38)(12,62,103,53)(13,47,102,68)(14,32,101,83)(15,17,100,98)(18,85,97,30)(19,70,96,45)(20,55,95,60)(21,40,94,75)(22,25,93,90)(26,78,89,37)(27,63,88,52)(28,48,87,67)(29,33,86,82)(34,71,81,44)(35,56,80,59)(36,41,79,74)(42,64,73,51)(43,49,72,66)(50,57,65,58)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113), (2,99,113,16)(3,84,112,31)(4,69,111,46)(5,54,110,61)(6,39,109,76)(7,24,108,91)(8,9,107,106)(10,92,105,23)(11,77,104,38)(12,62,103,53)(13,47,102,68)(14,32,101,83)(15,17,100,98)(18,85,97,30)(19,70,96,45)(20,55,95,60)(21,40,94,75)(22,25,93,90)(26,78,89,37)(27,63,88,52)(28,48,87,67)(29,33,86,82)(34,71,81,44)(35,56,80,59)(36,41,79,74)(42,64,73,51)(43,49,72,66)(50,57,65,58) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113)], [(2,99,113,16),(3,84,112,31),(4,69,111,46),(5,54,110,61),(6,39,109,76),(7,24,108,91),(8,9,107,106),(10,92,105,23),(11,77,104,38),(12,62,103,53),(13,47,102,68),(14,32,101,83),(15,17,100,98),(18,85,97,30),(19,70,96,45),(20,55,95,60),(21,40,94,75),(22,25,93,90),(26,78,89,37),(27,63,88,52),(28,48,87,67),(29,33,86,82),(34,71,81,44),(35,56,80,59),(36,41,79,74),(42,64,73,51),(43,49,72,66),(50,57,65,58)]])
32 conjugacy classes
class | 1 | 2 | 4A | 4B | 113A | ··· | 113AB |
order | 1 | 2 | 4 | 4 | 113 | ··· | 113 |
size | 1 | 113 | 113 | 113 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 4 |
type | + | + | + | |
image | C1 | C2 | C4 | C113⋊C4 |
kernel | C113⋊C4 | D113 | C113 | C1 |
# reps | 1 | 1 | 2 | 28 |
Matrix representation of C113⋊C4 ►in GL4(𝔽2713) generated by
1866 | 1 | 0 | 0 |
2495 | 0 | 1 | 0 |
291 | 0 | 0 | 1 |
2247 | 1476 | 1245 | 892 |
283 | 1765 | 449 | 1870 |
1678 | 700 | 2407 | 1568 |
20 | 791 | 1755 | 1402 |
2364 | 2575 | 223 | 2688 |
G:=sub<GL(4,GF(2713))| [1866,2495,291,2247,1,0,0,1476,0,1,0,1245,0,0,1,892],[283,1678,20,2364,1765,700,791,2575,449,2407,1755,223,1870,1568,1402,2688] >;
C113⋊C4 in GAP, Magma, Sage, TeX
C_{113}\rtimes C_4
% in TeX
G:=Group("C113:C4");
// GroupNames label
G:=SmallGroup(452,3);
// by ID
G=gap.SmallGroup(452,3);
# by ID
G:=PCGroup([3,-2,-2,-113,6,3530,2021]);
// Polycyclic
G:=Group<a,b|a^113=b^4=1,b*a*b^-1=a^15>;
// generators/relations
Export