metacyclic, supersoluble, monomial, Z-group
Aliases: C79⋊C6, D79⋊C3, C79⋊C3⋊C2, SmallGroup(474,1)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C79 — C79⋊C3 — C79⋊C6 |
C79 — C79⋊C6 |
Generators and relations for C79⋊C6
G = < a,b | a79=b6=1, bab-1=a56 >
Character table of C79⋊C6
class | 1 | 2 | 3A | 3B | 6A | 6B | 79A | 79B | 79C | 79D | 79E | 79F | 79G | 79H | 79I | 79J | 79K | 79L | 79M | |
size | 1 | 79 | 79 | 79 | 79 | 79 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ4 | 1 | -1 | ζ32 | ζ3 | ζ6 | ζ65 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ5 | 1 | -1 | ζ3 | ζ32 | ζ65 | ζ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ6 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ7 | 6 | 0 | 0 | 0 | 0 | 0 | ζ7964+ζ7950+ζ7944+ζ7935+ζ7929+ζ7915 | ζ7973+ζ7965+ζ7959+ζ7920+ζ7914+ζ796 | ζ7975+ζ7966+ζ7962+ζ7917+ζ7913+ζ794 | ζ7967+ζ7951+ζ7940+ζ7939+ζ7928+ζ7912 | ζ7970+ζ7958+ζ7949+ζ7930+ζ7921+ζ799 | ζ7977+ζ7948+ζ7946+ζ7933+ζ7931+ζ792 | ζ7971+ζ7953+ζ7945+ζ7934+ζ7926+ζ798 | ζ7978+ζ7956+ζ7955+ζ7924+ζ7923+ζ79 | ζ7961+ζ7960+ζ7942+ζ7937+ζ7919+ζ7918 | ζ7974+ζ7943+ζ7941+ζ7938+ζ7936+ζ795 | ζ7957+ζ7954+ζ7947+ζ7932+ζ7925+ζ7922 | ζ7976+ζ7972+ζ7969+ζ7910+ζ797+ζ793 | ζ7968+ζ7963+ζ7952+ζ7927+ζ7916+ζ7911 | orthogonal faithful |
ρ8 | 6 | 0 | 0 | 0 | 0 | 0 | ζ7977+ζ7948+ζ7946+ζ7933+ζ7931+ζ792 | ζ7964+ζ7950+ζ7944+ζ7935+ζ7929+ζ7915 | ζ7976+ζ7972+ζ7969+ζ7910+ζ797+ζ793 | ζ7970+ζ7958+ζ7949+ζ7930+ζ7921+ζ799 | ζ7975+ζ7966+ζ7962+ζ7917+ζ7913+ζ794 | ζ7974+ζ7943+ζ7941+ζ7938+ζ7936+ζ795 | ζ7973+ζ7965+ζ7959+ζ7920+ζ7914+ζ796 | ζ7961+ζ7960+ζ7942+ζ7937+ζ7919+ζ7918 | ζ7971+ζ7953+ζ7945+ζ7934+ζ7926+ζ798 | ζ7968+ζ7963+ζ7952+ζ7927+ζ7916+ζ7911 | ζ7978+ζ7956+ζ7955+ζ7924+ζ7923+ζ79 | ζ7957+ζ7954+ζ7947+ζ7932+ζ7925+ζ7922 | ζ7967+ζ7951+ζ7940+ζ7939+ζ7928+ζ7912 | orthogonal faithful |
ρ9 | 6 | 0 | 0 | 0 | 0 | 0 | ζ7970+ζ7958+ζ7949+ζ7930+ζ7921+ζ799 | ζ7967+ζ7951+ζ7940+ζ7939+ζ7928+ζ7912 | ζ7971+ζ7953+ζ7945+ζ7934+ζ7926+ζ798 | ζ7978+ζ7956+ζ7955+ζ7924+ζ7923+ζ79 | ζ7961+ζ7960+ζ7942+ζ7937+ζ7919+ζ7918 | ζ7975+ζ7966+ζ7962+ζ7917+ζ7913+ζ794 | ζ7968+ζ7963+ζ7952+ζ7927+ζ7916+ζ7911 | ζ7977+ζ7948+ζ7946+ζ7933+ζ7931+ζ792 | ζ7974+ζ7943+ζ7941+ζ7938+ζ7936+ζ795 | ζ7976+ζ7972+ζ7969+ζ7910+ζ797+ζ793 | ζ7964+ζ7950+ζ7944+ζ7935+ζ7929+ζ7915 | ζ7973+ζ7965+ζ7959+ζ7920+ζ7914+ζ796 | ζ7957+ζ7954+ζ7947+ζ7932+ζ7925+ζ7922 | orthogonal faithful |
ρ10 | 6 | 0 | 0 | 0 | 0 | 0 | ζ7957+ζ7954+ζ7947+ζ7932+ζ7925+ζ7922 | ζ7976+ζ7972+ζ7969+ζ7910+ζ797+ζ793 | ζ7977+ζ7948+ζ7946+ζ7933+ζ7931+ζ792 | ζ7973+ζ7965+ζ7959+ζ7920+ζ7914+ζ796 | ζ7964+ζ7950+ζ7944+ζ7935+ζ7929+ζ7915 | ζ7978+ζ7956+ζ7955+ζ7924+ζ7923+ζ79 | ζ7975+ζ7966+ζ7962+ζ7917+ζ7913+ζ794 | ζ7967+ζ7951+ζ7940+ζ7939+ζ7928+ζ7912 | ζ7970+ζ7958+ζ7949+ζ7930+ζ7921+ζ799 | ζ7961+ζ7960+ζ7942+ζ7937+ζ7919+ζ7918 | ζ7968+ζ7963+ζ7952+ζ7927+ζ7916+ζ7911 | ζ7974+ζ7943+ζ7941+ζ7938+ζ7936+ζ795 | ζ7971+ζ7953+ζ7945+ζ7934+ζ7926+ζ798 | orthogonal faithful |
ρ11 | 6 | 0 | 0 | 0 | 0 | 0 | ζ7968+ζ7963+ζ7952+ζ7927+ζ7916+ζ7911 | ζ7974+ζ7943+ζ7941+ζ7938+ζ7936+ζ795 | ζ7978+ζ7956+ζ7955+ζ7924+ζ7923+ζ79 | ζ7976+ζ7972+ζ7969+ζ7910+ζ797+ζ793 | ζ7957+ζ7954+ζ7947+ζ7932+ζ7925+ζ7922 | ζ7967+ζ7951+ζ7940+ζ7939+ζ7928+ζ7912 | ζ7977+ζ7948+ζ7946+ζ7933+ζ7931+ζ792 | ζ7973+ζ7965+ζ7959+ζ7920+ζ7914+ζ796 | ζ7964+ζ7950+ζ7944+ζ7935+ζ7929+ζ7915 | ζ7970+ζ7958+ζ7949+ζ7930+ζ7921+ζ799 | ζ7971+ζ7953+ζ7945+ζ7934+ζ7926+ζ798 | ζ7961+ζ7960+ζ7942+ζ7937+ζ7919+ζ7918 | ζ7975+ζ7966+ζ7962+ζ7917+ζ7913+ζ794 | orthogonal faithful |
ρ12 | 6 | 0 | 0 | 0 | 0 | 0 | ζ7978+ζ7956+ζ7955+ζ7924+ζ7923+ζ79 | ζ7957+ζ7954+ζ7947+ζ7932+ζ7925+ζ7922 | ζ7974+ζ7943+ζ7941+ζ7938+ζ7936+ζ795 | ζ7964+ζ7950+ζ7944+ζ7935+ζ7929+ζ7915 | ζ7977+ζ7948+ζ7946+ζ7933+ζ7931+ζ792 | ζ7961+ζ7960+ζ7942+ζ7937+ζ7919+ζ7918 | ζ7976+ζ7972+ζ7969+ζ7910+ζ797+ζ793 | ζ7970+ζ7958+ζ7949+ζ7930+ζ7921+ζ799 | ζ7975+ζ7966+ζ7962+ζ7917+ζ7913+ζ794 | ζ7971+ζ7953+ζ7945+ζ7934+ζ7926+ζ798 | ζ7967+ζ7951+ζ7940+ζ7939+ζ7928+ζ7912 | ζ7968+ζ7963+ζ7952+ζ7927+ζ7916+ζ7911 | ζ7973+ζ7965+ζ7959+ζ7920+ζ7914+ζ796 | orthogonal faithful |
ρ13 | 6 | 0 | 0 | 0 | 0 | 0 | ζ7973+ζ7965+ζ7959+ζ7920+ζ7914+ζ796 | ζ7971+ζ7953+ζ7945+ζ7934+ζ7926+ζ798 | ζ7970+ζ7958+ζ7949+ζ7930+ζ7921+ζ799 | ζ7968+ζ7963+ζ7952+ζ7927+ζ7916+ζ7911 | ζ7967+ζ7951+ζ7940+ζ7939+ζ7928+ζ7912 | ζ7964+ζ7950+ζ7944+ζ7935+ζ7929+ζ7915 | ζ7961+ζ7960+ζ7942+ζ7937+ζ7919+ζ7918 | ζ7957+ζ7954+ζ7947+ζ7932+ζ7925+ζ7922 | ζ7978+ζ7956+ζ7955+ζ7924+ζ7923+ζ79 | ζ7977+ζ7948+ζ7946+ζ7933+ζ7931+ζ792 | ζ7976+ζ7972+ζ7969+ζ7910+ζ797+ζ793 | ζ7975+ζ7966+ζ7962+ζ7917+ζ7913+ζ794 | ζ7974+ζ7943+ζ7941+ζ7938+ζ7936+ζ795 | orthogonal faithful |
ρ14 | 6 | 0 | 0 | 0 | 0 | 0 | ζ7974+ζ7943+ζ7941+ζ7938+ζ7936+ζ795 | ζ7977+ζ7948+ζ7946+ζ7933+ζ7931+ζ792 | ζ7957+ζ7954+ζ7947+ζ7932+ζ7925+ζ7922 | ζ7975+ζ7966+ζ7962+ζ7917+ζ7913+ζ794 | ζ7976+ζ7972+ζ7969+ζ7910+ζ797+ζ793 | ζ7968+ζ7963+ζ7952+ζ7927+ζ7916+ζ7911 | ζ7964+ζ7950+ζ7944+ζ7935+ζ7929+ζ7915 | ζ7971+ζ7953+ζ7945+ζ7934+ζ7926+ζ798 | ζ7973+ζ7965+ζ7959+ζ7920+ζ7914+ζ796 | ζ7967+ζ7951+ζ7940+ζ7939+ζ7928+ζ7912 | ζ7961+ζ7960+ζ7942+ζ7937+ζ7919+ζ7918 | ζ7978+ζ7956+ζ7955+ζ7924+ζ7923+ζ79 | ζ7970+ζ7958+ζ7949+ζ7930+ζ7921+ζ799 | orthogonal faithful |
ρ15 | 6 | 0 | 0 | 0 | 0 | 0 | ζ7971+ζ7953+ζ7945+ζ7934+ζ7926+ζ798 | ζ7961+ζ7960+ζ7942+ζ7937+ζ7919+ζ7918 | ζ7967+ζ7951+ζ7940+ζ7939+ζ7928+ζ7912 | ζ7974+ζ7943+ζ7941+ζ7938+ζ7936+ζ795 | ζ7968+ζ7963+ζ7952+ζ7927+ζ7916+ζ7911 | ζ7973+ζ7965+ζ7959+ζ7920+ζ7914+ζ796 | ζ7978+ζ7956+ζ7955+ζ7924+ζ7923+ζ79 | ζ7976+ζ7972+ζ7969+ζ7910+ζ797+ζ793 | ζ7957+ζ7954+ζ7947+ζ7932+ζ7925+ζ7922 | ζ7964+ζ7950+ζ7944+ζ7935+ζ7929+ζ7915 | ζ7975+ζ7966+ζ7962+ζ7917+ζ7913+ζ794 | ζ7970+ζ7958+ζ7949+ζ7930+ζ7921+ζ799 | ζ7977+ζ7948+ζ7946+ζ7933+ζ7931+ζ792 | orthogonal faithful |
ρ16 | 6 | 0 | 0 | 0 | 0 | 0 | ζ7967+ζ7951+ζ7940+ζ7939+ζ7928+ζ7912 | ζ7968+ζ7963+ζ7952+ζ7927+ζ7916+ζ7911 | ζ7961+ζ7960+ζ7942+ζ7937+ζ7919+ζ7918 | ζ7957+ζ7954+ζ7947+ζ7932+ζ7925+ζ7922 | ζ7978+ζ7956+ζ7955+ζ7924+ζ7923+ζ79 | ζ7970+ζ7958+ζ7949+ζ7930+ζ7921+ζ799 | ζ7974+ζ7943+ζ7941+ζ7938+ζ7936+ζ795 | ζ7964+ζ7950+ζ7944+ζ7935+ζ7929+ζ7915 | ζ7977+ζ7948+ζ7946+ζ7933+ζ7931+ζ792 | ζ7975+ζ7966+ζ7962+ζ7917+ζ7913+ζ794 | ζ7973+ζ7965+ζ7959+ζ7920+ζ7914+ζ796 | ζ7971+ζ7953+ζ7945+ζ7934+ζ7926+ζ798 | ζ7976+ζ7972+ζ7969+ζ7910+ζ797+ζ793 | orthogonal faithful |
ρ17 | 6 | 0 | 0 | 0 | 0 | 0 | ζ7976+ζ7972+ζ7969+ζ7910+ζ797+ζ793 | ζ7975+ζ7966+ζ7962+ζ7917+ζ7913+ζ794 | ζ7964+ζ7950+ζ7944+ζ7935+ζ7929+ζ7915 | ζ7971+ζ7953+ζ7945+ζ7934+ζ7926+ζ798 | ζ7973+ζ7965+ζ7959+ζ7920+ζ7914+ζ796 | ζ7957+ζ7954+ζ7947+ζ7932+ζ7925+ζ7922 | ζ7970+ζ7958+ζ7949+ζ7930+ζ7921+ζ799 | ζ7968+ζ7963+ζ7952+ζ7927+ζ7916+ζ7911 | ζ7967+ζ7951+ζ7940+ζ7939+ζ7928+ζ7912 | ζ7978+ζ7956+ζ7955+ζ7924+ζ7923+ζ79 | ζ7974+ζ7943+ζ7941+ζ7938+ζ7936+ζ795 | ζ7977+ζ7948+ζ7946+ζ7933+ζ7931+ζ792 | ζ7961+ζ7960+ζ7942+ζ7937+ζ7919+ζ7918 | orthogonal faithful |
ρ18 | 6 | 0 | 0 | 0 | 0 | 0 | ζ7961+ζ7960+ζ7942+ζ7937+ζ7919+ζ7918 | ζ7978+ζ7956+ζ7955+ζ7924+ζ7923+ζ79 | ζ7968+ζ7963+ζ7952+ζ7927+ζ7916+ζ7911 | ζ7977+ζ7948+ζ7946+ζ7933+ζ7931+ζ792 | ζ7974+ζ7943+ζ7941+ζ7938+ζ7936+ζ795 | ζ7971+ζ7953+ζ7945+ζ7934+ζ7926+ζ798 | ζ7957+ζ7954+ζ7947+ζ7932+ζ7925+ζ7922 | ζ7975+ζ7966+ζ7962+ζ7917+ζ7913+ζ794 | ζ7976+ζ7972+ζ7969+ζ7910+ζ797+ζ793 | ζ7973+ζ7965+ζ7959+ζ7920+ζ7914+ζ796 | ζ7970+ζ7958+ζ7949+ζ7930+ζ7921+ζ799 | ζ7967+ζ7951+ζ7940+ζ7939+ζ7928+ζ7912 | ζ7964+ζ7950+ζ7944+ζ7935+ζ7929+ζ7915 | orthogonal faithful |
ρ19 | 6 | 0 | 0 | 0 | 0 | 0 | ζ7975+ζ7966+ζ7962+ζ7917+ζ7913+ζ794 | ζ7970+ζ7958+ζ7949+ζ7930+ζ7921+ζ799 | ζ7973+ζ7965+ζ7959+ζ7920+ζ7914+ζ796 | ζ7961+ζ7960+ζ7942+ζ7937+ζ7919+ζ7918 | ζ7971+ζ7953+ζ7945+ζ7934+ζ7926+ζ798 | ζ7976+ζ7972+ζ7969+ζ7910+ζ797+ζ793 | ζ7967+ζ7951+ζ7940+ζ7939+ζ7928+ζ7912 | ζ7974+ζ7943+ζ7941+ζ7938+ζ7936+ζ795 | ζ7968+ζ7963+ζ7952+ζ7927+ζ7916+ζ7911 | ζ7957+ζ7954+ζ7947+ζ7932+ζ7925+ζ7922 | ζ7977+ζ7948+ζ7946+ζ7933+ζ7931+ζ792 | ζ7964+ζ7950+ζ7944+ζ7935+ζ7929+ζ7915 | ζ7978+ζ7956+ζ7955+ζ7924+ζ7923+ζ79 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79)
(2 25 24 79 56 57)(3 49 47 78 32 34)(4 73 70 77 8 11)(5 18 14 76 63 67)(6 42 37 75 39 44)(7 66 60 74 15 21)(9 35 27 72 46 54)(10 59 50 71 22 31)(12 28 17 69 53 64)(13 52 40 68 29 41)(16 45 30 65 36 51)(19 38 20 62 43 61)(23 55 33 58 26 48)
G:=sub<Sym(79)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79), (2,25,24,79,56,57)(3,49,47,78,32,34)(4,73,70,77,8,11)(5,18,14,76,63,67)(6,42,37,75,39,44)(7,66,60,74,15,21)(9,35,27,72,46,54)(10,59,50,71,22,31)(12,28,17,69,53,64)(13,52,40,68,29,41)(16,45,30,65,36,51)(19,38,20,62,43,61)(23,55,33,58,26,48)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79), (2,25,24,79,56,57)(3,49,47,78,32,34)(4,73,70,77,8,11)(5,18,14,76,63,67)(6,42,37,75,39,44)(7,66,60,74,15,21)(9,35,27,72,46,54)(10,59,50,71,22,31)(12,28,17,69,53,64)(13,52,40,68,29,41)(16,45,30,65,36,51)(19,38,20,62,43,61)(23,55,33,58,26,48) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79)], [(2,25,24,79,56,57),(3,49,47,78,32,34),(4,73,70,77,8,11),(5,18,14,76,63,67),(6,42,37,75,39,44),(7,66,60,74,15,21),(9,35,27,72,46,54),(10,59,50,71,22,31),(12,28,17,69,53,64),(13,52,40,68,29,41),(16,45,30,65,36,51),(19,38,20,62,43,61),(23,55,33,58,26,48)]])
Matrix representation of C79⋊C6 ►in GL6(𝔽1423)
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1422 | 886 | 63 | 1400 | 63 | 886 |
1 | 0 | 0 | 0 | 0 | 0 |
839 | 713 | 640 | 208 | 369 | 1075 |
473 | 595 | 92 | 545 | 1002 | 943 |
756 | 245 | 1322 | 175 | 72 | 1166 |
296 | 671 | 233 | 1146 | 342 | 261 |
1362 | 33 | 1125 | 747 | 301 | 100 |
G:=sub<GL(6,GF(1423))| [0,0,0,0,0,1422,1,0,0,0,0,886,0,1,0,0,0,63,0,0,1,0,0,1400,0,0,0,1,0,63,0,0,0,0,1,886],[1,839,473,756,296,1362,0,713,595,245,671,33,0,640,92,1322,233,1125,0,208,545,175,1146,747,0,369,1002,72,342,301,0,1075,943,1166,261,100] >;
C79⋊C6 in GAP, Magma, Sage, TeX
C_{79}\rtimes C_6
% in TeX
G:=Group("C79:C6");
// GroupNames label
G:=SmallGroup(474,1);
// by ID
G=gap.SmallGroup(474,1);
# by ID
G:=PCGroup([3,-2,-3,-79,4214,626]);
// Polycyclic
G:=Group<a,b|a^79=b^6=1,b*a*b^-1=a^56>;
// generators/relations
Export
Subgroup lattice of C79⋊C6 in TeX
Character table of C79⋊C6 in TeX