Copied to
clipboard

G = D229order 458 = 2·229

Dihedral group

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: D229, C229⋊C2, sometimes denoted D458 or Dih229 or Dih458, SmallGroup(458,1)

Series: Derived Chief Lower central Upper central

C1C229 — D229
C1C229 — D229
C229 — D229
C1

Generators and relations for D229
 G = < a,b | a229=b2=1, bab=a-1 >

229C2

Smallest permutation representation of D229
On 229 points: primitive
Generators in S229
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229)
(1 229)(2 228)(3 227)(4 226)(5 225)(6 224)(7 223)(8 222)(9 221)(10 220)(11 219)(12 218)(13 217)(14 216)(15 215)(16 214)(17 213)(18 212)(19 211)(20 210)(21 209)(22 208)(23 207)(24 206)(25 205)(26 204)(27 203)(28 202)(29 201)(30 200)(31 199)(32 198)(33 197)(34 196)(35 195)(36 194)(37 193)(38 192)(39 191)(40 190)(41 189)(42 188)(43 187)(44 186)(45 185)(46 184)(47 183)(48 182)(49 181)(50 180)(51 179)(52 178)(53 177)(54 176)(55 175)(56 174)(57 173)(58 172)(59 171)(60 170)(61 169)(62 168)(63 167)(64 166)(65 165)(66 164)(67 163)(68 162)(69 161)(70 160)(71 159)(72 158)(73 157)(74 156)(75 155)(76 154)(77 153)(78 152)(79 151)(80 150)(81 149)(82 148)(83 147)(84 146)(85 145)(86 144)(87 143)(88 142)(89 141)(90 140)(91 139)(92 138)(93 137)(94 136)(95 135)(96 134)(97 133)(98 132)(99 131)(100 130)(101 129)(102 128)(103 127)(104 126)(105 125)(106 124)(107 123)(108 122)(109 121)(110 120)(111 119)(112 118)(113 117)(114 116)

G:=sub<Sym(229)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229), (1,229)(2,228)(3,227)(4,226)(5,225)(6,224)(7,223)(8,222)(9,221)(10,220)(11,219)(12,218)(13,217)(14,216)(15,215)(16,214)(17,213)(18,212)(19,211)(20,210)(21,209)(22,208)(23,207)(24,206)(25,205)(26,204)(27,203)(28,202)(29,201)(30,200)(31,199)(32,198)(33,197)(34,196)(35,195)(36,194)(37,193)(38,192)(39,191)(40,190)(41,189)(42,188)(43,187)(44,186)(45,185)(46,184)(47,183)(48,182)(49,181)(50,180)(51,179)(52,178)(53,177)(54,176)(55,175)(56,174)(57,173)(58,172)(59,171)(60,170)(61,169)(62,168)(63,167)(64,166)(65,165)(66,164)(67,163)(68,162)(69,161)(70,160)(71,159)(72,158)(73,157)(74,156)(75,155)(76,154)(77,153)(78,152)(79,151)(80,150)(81,149)(82,148)(83,147)(84,146)(85,145)(86,144)(87,143)(88,142)(89,141)(90,140)(91,139)(92,138)(93,137)(94,136)(95,135)(96,134)(97,133)(98,132)(99,131)(100,130)(101,129)(102,128)(103,127)(104,126)(105,125)(106,124)(107,123)(108,122)(109,121)(110,120)(111,119)(112,118)(113,117)(114,116)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229), (1,229)(2,228)(3,227)(4,226)(5,225)(6,224)(7,223)(8,222)(9,221)(10,220)(11,219)(12,218)(13,217)(14,216)(15,215)(16,214)(17,213)(18,212)(19,211)(20,210)(21,209)(22,208)(23,207)(24,206)(25,205)(26,204)(27,203)(28,202)(29,201)(30,200)(31,199)(32,198)(33,197)(34,196)(35,195)(36,194)(37,193)(38,192)(39,191)(40,190)(41,189)(42,188)(43,187)(44,186)(45,185)(46,184)(47,183)(48,182)(49,181)(50,180)(51,179)(52,178)(53,177)(54,176)(55,175)(56,174)(57,173)(58,172)(59,171)(60,170)(61,169)(62,168)(63,167)(64,166)(65,165)(66,164)(67,163)(68,162)(69,161)(70,160)(71,159)(72,158)(73,157)(74,156)(75,155)(76,154)(77,153)(78,152)(79,151)(80,150)(81,149)(82,148)(83,147)(84,146)(85,145)(86,144)(87,143)(88,142)(89,141)(90,140)(91,139)(92,138)(93,137)(94,136)(95,135)(96,134)(97,133)(98,132)(99,131)(100,130)(101,129)(102,128)(103,127)(104,126)(105,125)(106,124)(107,123)(108,122)(109,121)(110,120)(111,119)(112,118)(113,117)(114,116) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229)], [(1,229),(2,228),(3,227),(4,226),(5,225),(6,224),(7,223),(8,222),(9,221),(10,220),(11,219),(12,218),(13,217),(14,216),(15,215),(16,214),(17,213),(18,212),(19,211),(20,210),(21,209),(22,208),(23,207),(24,206),(25,205),(26,204),(27,203),(28,202),(29,201),(30,200),(31,199),(32,198),(33,197),(34,196),(35,195),(36,194),(37,193),(38,192),(39,191),(40,190),(41,189),(42,188),(43,187),(44,186),(45,185),(46,184),(47,183),(48,182),(49,181),(50,180),(51,179),(52,178),(53,177),(54,176),(55,175),(56,174),(57,173),(58,172),(59,171),(60,170),(61,169),(62,168),(63,167),(64,166),(65,165),(66,164),(67,163),(68,162),(69,161),(70,160),(71,159),(72,158),(73,157),(74,156),(75,155),(76,154),(77,153),(78,152),(79,151),(80,150),(81,149),(82,148),(83,147),(84,146),(85,145),(86,144),(87,143),(88,142),(89,141),(90,140),(91,139),(92,138),(93,137),(94,136),(95,135),(96,134),(97,133),(98,132),(99,131),(100,130),(101,129),(102,128),(103,127),(104,126),(105,125),(106,124),(107,123),(108,122),(109,121),(110,120),(111,119),(112,118),(113,117),(114,116)]])

116 conjugacy classes

class 1  2 229A···229DJ
order12229···229
size12292···2

116 irreducible representations

dim112
type+++
imageC1C2D229
kernelD229C229C1
# reps11114

Matrix representation of D229 in GL2(𝔽2749) generated by

19332748
10
,
19332748
597816
G:=sub<GL(2,GF(2749))| [1933,1,2748,0],[1933,597,2748,816] >;

D229 in GAP, Magma, Sage, TeX

D_{229}
% in TeX

G:=Group("D229");
// GroupNames label

G:=SmallGroup(458,1);
// by ID

G=gap.SmallGroup(458,1);
# by ID

G:=PCGroup([2,-2,-229,1825]);
// Polycyclic

G:=Group<a,b|a^229=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D229 in TeX

׿
×
𝔽