direct product, abelian, monomial, 2-elementary
Aliases: C2×C114, SmallGroup(228,15)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2×C114 |
C1 — C2×C114 |
C1 — C2×C114 |
Generators and relations for C2×C114
G = < a,b | a2=b114=1, ab=ba >
(1 146)(2 147)(3 148)(4 149)(5 150)(6 151)(7 152)(8 153)(9 154)(10 155)(11 156)(12 157)(13 158)(14 159)(15 160)(16 161)(17 162)(18 163)(19 164)(20 165)(21 166)(22 167)(23 168)(24 169)(25 170)(26 171)(27 172)(28 173)(29 174)(30 175)(31 176)(32 177)(33 178)(34 179)(35 180)(36 181)(37 182)(38 183)(39 184)(40 185)(41 186)(42 187)(43 188)(44 189)(45 190)(46 191)(47 192)(48 193)(49 194)(50 195)(51 196)(52 197)(53 198)(54 199)(55 200)(56 201)(57 202)(58 203)(59 204)(60 205)(61 206)(62 207)(63 208)(64 209)(65 210)(66 211)(67 212)(68 213)(69 214)(70 215)(71 216)(72 217)(73 218)(74 219)(75 220)(76 221)(77 222)(78 223)(79 224)(80 225)(81 226)(82 227)(83 228)(84 115)(85 116)(86 117)(87 118)(88 119)(89 120)(90 121)(91 122)(92 123)(93 124)(94 125)(95 126)(96 127)(97 128)(98 129)(99 130)(100 131)(101 132)(102 133)(103 134)(104 135)(105 136)(106 137)(107 138)(108 139)(109 140)(110 141)(111 142)(112 143)(113 144)(114 145)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114)(115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228)
G:=sub<Sym(228)| (1,146)(2,147)(3,148)(4,149)(5,150)(6,151)(7,152)(8,153)(9,154)(10,155)(11,156)(12,157)(13,158)(14,159)(15,160)(16,161)(17,162)(18,163)(19,164)(20,165)(21,166)(22,167)(23,168)(24,169)(25,170)(26,171)(27,172)(28,173)(29,174)(30,175)(31,176)(32,177)(33,178)(34,179)(35,180)(36,181)(37,182)(38,183)(39,184)(40,185)(41,186)(42,187)(43,188)(44,189)(45,190)(46,191)(47,192)(48,193)(49,194)(50,195)(51,196)(52,197)(53,198)(54,199)(55,200)(56,201)(57,202)(58,203)(59,204)(60,205)(61,206)(62,207)(63,208)(64,209)(65,210)(66,211)(67,212)(68,213)(69,214)(70,215)(71,216)(72,217)(73,218)(74,219)(75,220)(76,221)(77,222)(78,223)(79,224)(80,225)(81,226)(82,227)(83,228)(84,115)(85,116)(86,117)(87,118)(88,119)(89,120)(90,121)(91,122)(92,123)(93,124)(94,125)(95,126)(96,127)(97,128)(98,129)(99,130)(100,131)(101,132)(102,133)(103,134)(104,135)(105,136)(106,137)(107,138)(108,139)(109,140)(110,141)(111,142)(112,143)(113,144)(114,145), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228)>;
G:=Group( (1,146)(2,147)(3,148)(4,149)(5,150)(6,151)(7,152)(8,153)(9,154)(10,155)(11,156)(12,157)(13,158)(14,159)(15,160)(16,161)(17,162)(18,163)(19,164)(20,165)(21,166)(22,167)(23,168)(24,169)(25,170)(26,171)(27,172)(28,173)(29,174)(30,175)(31,176)(32,177)(33,178)(34,179)(35,180)(36,181)(37,182)(38,183)(39,184)(40,185)(41,186)(42,187)(43,188)(44,189)(45,190)(46,191)(47,192)(48,193)(49,194)(50,195)(51,196)(52,197)(53,198)(54,199)(55,200)(56,201)(57,202)(58,203)(59,204)(60,205)(61,206)(62,207)(63,208)(64,209)(65,210)(66,211)(67,212)(68,213)(69,214)(70,215)(71,216)(72,217)(73,218)(74,219)(75,220)(76,221)(77,222)(78,223)(79,224)(80,225)(81,226)(82,227)(83,228)(84,115)(85,116)(86,117)(87,118)(88,119)(89,120)(90,121)(91,122)(92,123)(93,124)(94,125)(95,126)(96,127)(97,128)(98,129)(99,130)(100,131)(101,132)(102,133)(103,134)(104,135)(105,136)(106,137)(107,138)(108,139)(109,140)(110,141)(111,142)(112,143)(113,144)(114,145), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228) );
G=PermutationGroup([[(1,146),(2,147),(3,148),(4,149),(5,150),(6,151),(7,152),(8,153),(9,154),(10,155),(11,156),(12,157),(13,158),(14,159),(15,160),(16,161),(17,162),(18,163),(19,164),(20,165),(21,166),(22,167),(23,168),(24,169),(25,170),(26,171),(27,172),(28,173),(29,174),(30,175),(31,176),(32,177),(33,178),(34,179),(35,180),(36,181),(37,182),(38,183),(39,184),(40,185),(41,186),(42,187),(43,188),(44,189),(45,190),(46,191),(47,192),(48,193),(49,194),(50,195),(51,196),(52,197),(53,198),(54,199),(55,200),(56,201),(57,202),(58,203),(59,204),(60,205),(61,206),(62,207),(63,208),(64,209),(65,210),(66,211),(67,212),(68,213),(69,214),(70,215),(71,216),(72,217),(73,218),(74,219),(75,220),(76,221),(77,222),(78,223),(79,224),(80,225),(81,226),(82,227),(83,228),(84,115),(85,116),(86,117),(87,118),(88,119),(89,120),(90,121),(91,122),(92,123),(93,124),(94,125),(95,126),(96,127),(97,128),(98,129),(99,130),(100,131),(101,132),(102,133),(103,134),(104,135),(105,136),(106,137),(107,138),(108,139),(109,140),(110,141),(111,142),(112,143),(113,144),(114,145)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114),(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228)]])
C2×C114 is a maximal subgroup of
C57⋊7D4
228 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 6A | ··· | 6F | 19A | ··· | 19R | 38A | ··· | 38BB | 57A | ··· | 57AJ | 114A | ··· | 114DD |
order | 1 | 2 | 2 | 2 | 3 | 3 | 6 | ··· | 6 | 19 | ··· | 19 | 38 | ··· | 38 | 57 | ··· | 57 | 114 | ··· | 114 |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
228 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | ||||||
image | C1 | C2 | C3 | C6 | C19 | C38 | C57 | C114 |
kernel | C2×C114 | C114 | C2×C38 | C38 | C2×C6 | C6 | C22 | C2 |
# reps | 1 | 3 | 2 | 6 | 18 | 54 | 36 | 108 |
Matrix representation of C2×C114 ►in GL2(𝔽229) generated by
228 | 0 |
0 | 1 |
85 | 0 |
0 | 71 |
G:=sub<GL(2,GF(229))| [228,0,0,1],[85,0,0,71] >;
C2×C114 in GAP, Magma, Sage, TeX
C_2\times C_{114}
% in TeX
G:=Group("C2xC114");
// GroupNames label
G:=SmallGroup(228,15);
// by ID
G=gap.SmallGroup(228,15);
# by ID
G:=PCGroup([4,-2,-2,-3,-19]);
// Polycyclic
G:=Group<a,b|a^2=b^114=1,a*b=b*a>;
// generators/relations
Export