Copied to
clipboard

G = S3×C5×C15order 450 = 2·32·52

Direct product of C5×C15 and S3

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: S3×C5×C15, C153C30, C1527C2, C3⋊(C5×C30), (C5×C15)⋊9C6, (C3×C15)⋊4C10, C321(C5×C10), SmallGroup(450,28)

Series: Derived Chief Lower central Upper central

C1C3 — S3×C5×C15
C1C3C15C5×C15C152 — S3×C5×C15
C3 — S3×C5×C15
C1C5×C15

Generators and relations for S3×C5×C15
 G = < a,b,c,d | a5=b15=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 112 in 72 conjugacy classes, 48 normal (12 characteristic)
C1, C2, C3, C3, C5, S3, C6, C32, C10, C15, C15, C3×S3, C52, C5×S3, C30, C3×C15, C5×C10, C5×C15, C5×C15, S3×C15, S3×C52, C5×C30, C152, S3×C5×C15
Quotients: C1, C2, C3, C5, S3, C6, C10, C15, C3×S3, C52, C5×S3, C30, C5×C10, C5×C15, S3×C15, S3×C52, C5×C30, S3×C5×C15

Smallest permutation representation of S3×C5×C15
On 150 points
Generators in S150
(1 73 55 40 22)(2 74 56 41 23)(3 75 57 42 24)(4 61 58 43 25)(5 62 59 44 26)(6 63 60 45 27)(7 64 46 31 28)(8 65 47 32 29)(9 66 48 33 30)(10 67 49 34 16)(11 68 50 35 17)(12 69 51 36 18)(13 70 52 37 19)(14 71 53 38 20)(15 72 54 39 21)(76 145 124 109 100)(77 146 125 110 101)(78 147 126 111 102)(79 148 127 112 103)(80 149 128 113 104)(81 150 129 114 105)(82 136 130 115 91)(83 137 131 116 92)(84 138 132 117 93)(85 139 133 118 94)(86 140 134 119 95)(87 141 135 120 96)(88 142 121 106 97)(89 143 122 107 98)(90 144 123 108 99)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144 145 146 147 148 149 150)
(1 11 6)(2 12 7)(3 13 8)(4 14 9)(5 15 10)(16 26 21)(17 27 22)(18 28 23)(19 29 24)(20 30 25)(31 41 36)(32 42 37)(33 43 38)(34 44 39)(35 45 40)(46 56 51)(47 57 52)(48 58 53)(49 59 54)(50 60 55)(61 71 66)(62 72 67)(63 73 68)(64 74 69)(65 75 70)(76 81 86)(77 82 87)(78 83 88)(79 84 89)(80 85 90)(91 96 101)(92 97 102)(93 98 103)(94 99 104)(95 100 105)(106 111 116)(107 112 117)(108 113 118)(109 114 119)(110 115 120)(121 126 131)(122 127 132)(123 128 133)(124 129 134)(125 130 135)(136 141 146)(137 142 147)(138 143 148)(139 144 149)(140 145 150)
(1 82)(2 83)(3 84)(4 85)(5 86)(6 87)(7 88)(8 89)(9 90)(10 76)(11 77)(12 78)(13 79)(14 80)(15 81)(16 100)(17 101)(18 102)(19 103)(20 104)(21 105)(22 91)(23 92)(24 93)(25 94)(26 95)(27 96)(28 97)(29 98)(30 99)(31 106)(32 107)(33 108)(34 109)(35 110)(36 111)(37 112)(38 113)(39 114)(40 115)(41 116)(42 117)(43 118)(44 119)(45 120)(46 121)(47 122)(48 123)(49 124)(50 125)(51 126)(52 127)(53 128)(54 129)(55 130)(56 131)(57 132)(58 133)(59 134)(60 135)(61 139)(62 140)(63 141)(64 142)(65 143)(66 144)(67 145)(68 146)(69 147)(70 148)(71 149)(72 150)(73 136)(74 137)(75 138)

G:=sub<Sym(150)| (1,73,55,40,22)(2,74,56,41,23)(3,75,57,42,24)(4,61,58,43,25)(5,62,59,44,26)(6,63,60,45,27)(7,64,46,31,28)(8,65,47,32,29)(9,66,48,33,30)(10,67,49,34,16)(11,68,50,35,17)(12,69,51,36,18)(13,70,52,37,19)(14,71,53,38,20)(15,72,54,39,21)(76,145,124,109,100)(77,146,125,110,101)(78,147,126,111,102)(79,148,127,112,103)(80,149,128,113,104)(81,150,129,114,105)(82,136,130,115,91)(83,137,131,116,92)(84,138,132,117,93)(85,139,133,118,94)(86,140,134,119,95)(87,141,135,120,96)(88,142,121,106,97)(89,143,122,107,98)(90,144,123,108,99), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150), (1,11,6)(2,12,7)(3,13,8)(4,14,9)(5,15,10)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55)(61,71,66)(62,72,67)(63,73,68)(64,74,69)(65,75,70)(76,81,86)(77,82,87)(78,83,88)(79,84,89)(80,85,90)(91,96,101)(92,97,102)(93,98,103)(94,99,104)(95,100,105)(106,111,116)(107,112,117)(108,113,118)(109,114,119)(110,115,120)(121,126,131)(122,127,132)(123,128,133)(124,129,134)(125,130,135)(136,141,146)(137,142,147)(138,143,148)(139,144,149)(140,145,150), (1,82)(2,83)(3,84)(4,85)(5,86)(6,87)(7,88)(8,89)(9,90)(10,76)(11,77)(12,78)(13,79)(14,80)(15,81)(16,100)(17,101)(18,102)(19,103)(20,104)(21,105)(22,91)(23,92)(24,93)(25,94)(26,95)(27,96)(28,97)(29,98)(30,99)(31,106)(32,107)(33,108)(34,109)(35,110)(36,111)(37,112)(38,113)(39,114)(40,115)(41,116)(42,117)(43,118)(44,119)(45,120)(46,121)(47,122)(48,123)(49,124)(50,125)(51,126)(52,127)(53,128)(54,129)(55,130)(56,131)(57,132)(58,133)(59,134)(60,135)(61,139)(62,140)(63,141)(64,142)(65,143)(66,144)(67,145)(68,146)(69,147)(70,148)(71,149)(72,150)(73,136)(74,137)(75,138)>;

G:=Group( (1,73,55,40,22)(2,74,56,41,23)(3,75,57,42,24)(4,61,58,43,25)(5,62,59,44,26)(6,63,60,45,27)(7,64,46,31,28)(8,65,47,32,29)(9,66,48,33,30)(10,67,49,34,16)(11,68,50,35,17)(12,69,51,36,18)(13,70,52,37,19)(14,71,53,38,20)(15,72,54,39,21)(76,145,124,109,100)(77,146,125,110,101)(78,147,126,111,102)(79,148,127,112,103)(80,149,128,113,104)(81,150,129,114,105)(82,136,130,115,91)(83,137,131,116,92)(84,138,132,117,93)(85,139,133,118,94)(86,140,134,119,95)(87,141,135,120,96)(88,142,121,106,97)(89,143,122,107,98)(90,144,123,108,99), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150), (1,11,6)(2,12,7)(3,13,8)(4,14,9)(5,15,10)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55)(61,71,66)(62,72,67)(63,73,68)(64,74,69)(65,75,70)(76,81,86)(77,82,87)(78,83,88)(79,84,89)(80,85,90)(91,96,101)(92,97,102)(93,98,103)(94,99,104)(95,100,105)(106,111,116)(107,112,117)(108,113,118)(109,114,119)(110,115,120)(121,126,131)(122,127,132)(123,128,133)(124,129,134)(125,130,135)(136,141,146)(137,142,147)(138,143,148)(139,144,149)(140,145,150), (1,82)(2,83)(3,84)(4,85)(5,86)(6,87)(7,88)(8,89)(9,90)(10,76)(11,77)(12,78)(13,79)(14,80)(15,81)(16,100)(17,101)(18,102)(19,103)(20,104)(21,105)(22,91)(23,92)(24,93)(25,94)(26,95)(27,96)(28,97)(29,98)(30,99)(31,106)(32,107)(33,108)(34,109)(35,110)(36,111)(37,112)(38,113)(39,114)(40,115)(41,116)(42,117)(43,118)(44,119)(45,120)(46,121)(47,122)(48,123)(49,124)(50,125)(51,126)(52,127)(53,128)(54,129)(55,130)(56,131)(57,132)(58,133)(59,134)(60,135)(61,139)(62,140)(63,141)(64,142)(65,143)(66,144)(67,145)(68,146)(69,147)(70,148)(71,149)(72,150)(73,136)(74,137)(75,138) );

G=PermutationGroup([[(1,73,55,40,22),(2,74,56,41,23),(3,75,57,42,24),(4,61,58,43,25),(5,62,59,44,26),(6,63,60,45,27),(7,64,46,31,28),(8,65,47,32,29),(9,66,48,33,30),(10,67,49,34,16),(11,68,50,35,17),(12,69,51,36,18),(13,70,52,37,19),(14,71,53,38,20),(15,72,54,39,21),(76,145,124,109,100),(77,146,125,110,101),(78,147,126,111,102),(79,148,127,112,103),(80,149,128,113,104),(81,150,129,114,105),(82,136,130,115,91),(83,137,131,116,92),(84,138,132,117,93),(85,139,133,118,94),(86,140,134,119,95),(87,141,135,120,96),(88,142,121,106,97),(89,143,122,107,98),(90,144,123,108,99)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)], [(1,11,6),(2,12,7),(3,13,8),(4,14,9),(5,15,10),(16,26,21),(17,27,22),(18,28,23),(19,29,24),(20,30,25),(31,41,36),(32,42,37),(33,43,38),(34,44,39),(35,45,40),(46,56,51),(47,57,52),(48,58,53),(49,59,54),(50,60,55),(61,71,66),(62,72,67),(63,73,68),(64,74,69),(65,75,70),(76,81,86),(77,82,87),(78,83,88),(79,84,89),(80,85,90),(91,96,101),(92,97,102),(93,98,103),(94,99,104),(95,100,105),(106,111,116),(107,112,117),(108,113,118),(109,114,119),(110,115,120),(121,126,131),(122,127,132),(123,128,133),(124,129,134),(125,130,135),(136,141,146),(137,142,147),(138,143,148),(139,144,149),(140,145,150)], [(1,82),(2,83),(3,84),(4,85),(5,86),(6,87),(7,88),(8,89),(9,90),(10,76),(11,77),(12,78),(13,79),(14,80),(15,81),(16,100),(17,101),(18,102),(19,103),(20,104),(21,105),(22,91),(23,92),(24,93),(25,94),(26,95),(27,96),(28,97),(29,98),(30,99),(31,106),(32,107),(33,108),(34,109),(35,110),(36,111),(37,112),(38,113),(39,114),(40,115),(41,116),(42,117),(43,118),(44,119),(45,120),(46,121),(47,122),(48,123),(49,124),(50,125),(51,126),(52,127),(53,128),(54,129),(55,130),(56,131),(57,132),(58,133),(59,134),(60,135),(61,139),(62,140),(63,141),(64,142),(65,143),(66,144),(67,145),(68,146),(69,147),(70,148),(71,149),(72,150),(73,136),(74,137),(75,138)]])

225 conjugacy classes

class 1  2 3A3B3C3D3E5A···5X6A6B10A···10X15A···15AV15AW···15DP30A···30AV
order12333335···56610···1015···1515···1530···30
size13112221···1333···31···12···23···3

225 irreducible representations

dim111111112222
type+++
imageC1C2C3C5C6C10C15C30S3C3×S3C5×S3S3×C15
kernelS3×C5×C15C152S3×C52S3×C15C5×C15C3×C15C5×S3C15C5×C15C52C15C5
# reps112242244848122448

Matrix representation of S3×C5×C15 in GL3(𝔽31) generated by

1600
0160
0016
,
500
0180
0018
,
100
050
0025
,
100
008
040
G:=sub<GL(3,GF(31))| [16,0,0,0,16,0,0,0,16],[5,0,0,0,18,0,0,0,18],[1,0,0,0,5,0,0,0,25],[1,0,0,0,0,4,0,8,0] >;

S3×C5×C15 in GAP, Magma, Sage, TeX

S_3\times C_5\times C_{15}
% in TeX

G:=Group("S3xC5xC15");
// GroupNames label

G:=SmallGroup(450,28);
// by ID

G=gap.SmallGroup(450,28);
# by ID

G:=PCGroup([5,-2,-3,-5,-5,-3,7504]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^15=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽