Extensions 1→N→G→Q→1 with N=C3×C15 and Q=D5

Direct product G=N×Q with N=C3×C15 and Q=D5
dρLabelID
D5×C3×C1590D5xC3xC15450,26

Semidirect products G=N:Q with N=C3×C15 and Q=D5
extensionφ:Q→Aut NdρLabelID
(C3×C15)⋊1D5 = C15⋊D15φ: D5/C5C2 ⊆ Aut C3×C15225(C3xC15):1D5450,33
(C3×C15)⋊2D5 = C3×C5⋊D15φ: D5/C5C2 ⊆ Aut C3×C15150(C3xC15):2D5450,30
(C3×C15)⋊3D5 = C32×C5⋊D5φ: D5/C5C2 ⊆ Aut C3×C15225(C3xC15):3D5450,27
(C3×C15)⋊4D5 = C15×D15φ: D5/C5C2 ⊆ Aut C3×C15302(C3xC15):4D5450,29
(C3×C15)⋊5D5 = C5×C3⋊D15φ: D5/C5C2 ⊆ Aut C3×C1590(C3xC15):5D5450,32

Non-split extensions G=N.Q with N=C3×C15 and Q=D5
extensionφ:Q→Aut NdρLabelID
(C3×C15).1D5 = C3⋊D75φ: D5/C5C2 ⊆ Aut C3×C15225(C3xC15).1D5450,9
(C3×C15).2D5 = C3×D75φ: D5/C5C2 ⊆ Aut C3×C151502(C3xC15).2D5450,7
(C3×C15).3D5 = C32×D25φ: D5/C5C2 ⊆ Aut C3×C15225(C3xC15).3D5450,5

׿
×
𝔽