metabelian, supersoluble, monomial, A-group
Aliases: C3⋊D75, C75⋊1S3, C32⋊2D25, C15.2D15, C25⋊(C3⋊S3), (C3×C75)⋊1C2, C5.(C3⋊D15), (C3×C15).1D5, SmallGroup(450,9)
Series: Derived ►Chief ►Lower central ►Upper central
C3×C75 — C3⋊D75 |
Generators and relations for C3⋊D75
G = < a,b,c | a3=b75=c2=1, ab=ba, cac=a-1, cbc=b-1 >
(1 222 147)(2 223 148)(3 224 149)(4 225 150)(5 151 76)(6 152 77)(7 153 78)(8 154 79)(9 155 80)(10 156 81)(11 157 82)(12 158 83)(13 159 84)(14 160 85)(15 161 86)(16 162 87)(17 163 88)(18 164 89)(19 165 90)(20 166 91)(21 167 92)(22 168 93)(23 169 94)(24 170 95)(25 171 96)(26 172 97)(27 173 98)(28 174 99)(29 175 100)(30 176 101)(31 177 102)(32 178 103)(33 179 104)(34 180 105)(35 181 106)(36 182 107)(37 183 108)(38 184 109)(39 185 110)(40 186 111)(41 187 112)(42 188 113)(43 189 114)(44 190 115)(45 191 116)(46 192 117)(47 193 118)(48 194 119)(49 195 120)(50 196 121)(51 197 122)(52 198 123)(53 199 124)(54 200 125)(55 201 126)(56 202 127)(57 203 128)(58 204 129)(59 205 130)(60 206 131)(61 207 132)(62 208 133)(63 209 134)(64 210 135)(65 211 136)(66 212 137)(67 213 138)(68 214 139)(69 215 140)(70 216 141)(71 217 142)(72 218 143)(73 219 144)(74 220 145)(75 221 146)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225)
(2 75)(3 74)(4 73)(5 72)(6 71)(7 70)(8 69)(9 68)(10 67)(11 66)(12 65)(13 64)(14 63)(15 62)(16 61)(17 60)(18 59)(19 58)(20 57)(21 56)(22 55)(23 54)(24 53)(25 52)(26 51)(27 50)(28 49)(29 48)(30 47)(31 46)(32 45)(33 44)(34 43)(35 42)(36 41)(37 40)(38 39)(76 218)(77 217)(78 216)(79 215)(80 214)(81 213)(82 212)(83 211)(84 210)(85 209)(86 208)(87 207)(88 206)(89 205)(90 204)(91 203)(92 202)(93 201)(94 200)(95 199)(96 198)(97 197)(98 196)(99 195)(100 194)(101 193)(102 192)(103 191)(104 190)(105 189)(106 188)(107 187)(108 186)(109 185)(110 184)(111 183)(112 182)(113 181)(114 180)(115 179)(116 178)(117 177)(118 176)(119 175)(120 174)(121 173)(122 172)(123 171)(124 170)(125 169)(126 168)(127 167)(128 166)(129 165)(130 164)(131 163)(132 162)(133 161)(134 160)(135 159)(136 158)(137 157)(138 156)(139 155)(140 154)(141 153)(142 152)(143 151)(144 225)(145 224)(146 223)(147 222)(148 221)(149 220)(150 219)
G:=sub<Sym(225)| (1,222,147)(2,223,148)(3,224,149)(4,225,150)(5,151,76)(6,152,77)(7,153,78)(8,154,79)(9,155,80)(10,156,81)(11,157,82)(12,158,83)(13,159,84)(14,160,85)(15,161,86)(16,162,87)(17,163,88)(18,164,89)(19,165,90)(20,166,91)(21,167,92)(22,168,93)(23,169,94)(24,170,95)(25,171,96)(26,172,97)(27,173,98)(28,174,99)(29,175,100)(30,176,101)(31,177,102)(32,178,103)(33,179,104)(34,180,105)(35,181,106)(36,182,107)(37,183,108)(38,184,109)(39,185,110)(40,186,111)(41,187,112)(42,188,113)(43,189,114)(44,190,115)(45,191,116)(46,192,117)(47,193,118)(48,194,119)(49,195,120)(50,196,121)(51,197,122)(52,198,123)(53,199,124)(54,200,125)(55,201,126)(56,202,127)(57,203,128)(58,204,129)(59,205,130)(60,206,131)(61,207,132)(62,208,133)(63,209,134)(64,210,135)(65,211,136)(66,212,137)(67,213,138)(68,214,139)(69,215,140)(70,216,141)(71,217,142)(72,218,143)(73,219,144)(74,220,145)(75,221,146), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225), (2,75)(3,74)(4,73)(5,72)(6,71)(7,70)(8,69)(9,68)(10,67)(11,66)(12,65)(13,64)(14,63)(15,62)(16,61)(17,60)(18,59)(19,58)(20,57)(21,56)(22,55)(23,54)(24,53)(25,52)(26,51)(27,50)(28,49)(29,48)(30,47)(31,46)(32,45)(33,44)(34,43)(35,42)(36,41)(37,40)(38,39)(76,218)(77,217)(78,216)(79,215)(80,214)(81,213)(82,212)(83,211)(84,210)(85,209)(86,208)(87,207)(88,206)(89,205)(90,204)(91,203)(92,202)(93,201)(94,200)(95,199)(96,198)(97,197)(98,196)(99,195)(100,194)(101,193)(102,192)(103,191)(104,190)(105,189)(106,188)(107,187)(108,186)(109,185)(110,184)(111,183)(112,182)(113,181)(114,180)(115,179)(116,178)(117,177)(118,176)(119,175)(120,174)(121,173)(122,172)(123,171)(124,170)(125,169)(126,168)(127,167)(128,166)(129,165)(130,164)(131,163)(132,162)(133,161)(134,160)(135,159)(136,158)(137,157)(138,156)(139,155)(140,154)(141,153)(142,152)(143,151)(144,225)(145,224)(146,223)(147,222)(148,221)(149,220)(150,219)>;
G:=Group( (1,222,147)(2,223,148)(3,224,149)(4,225,150)(5,151,76)(6,152,77)(7,153,78)(8,154,79)(9,155,80)(10,156,81)(11,157,82)(12,158,83)(13,159,84)(14,160,85)(15,161,86)(16,162,87)(17,163,88)(18,164,89)(19,165,90)(20,166,91)(21,167,92)(22,168,93)(23,169,94)(24,170,95)(25,171,96)(26,172,97)(27,173,98)(28,174,99)(29,175,100)(30,176,101)(31,177,102)(32,178,103)(33,179,104)(34,180,105)(35,181,106)(36,182,107)(37,183,108)(38,184,109)(39,185,110)(40,186,111)(41,187,112)(42,188,113)(43,189,114)(44,190,115)(45,191,116)(46,192,117)(47,193,118)(48,194,119)(49,195,120)(50,196,121)(51,197,122)(52,198,123)(53,199,124)(54,200,125)(55,201,126)(56,202,127)(57,203,128)(58,204,129)(59,205,130)(60,206,131)(61,207,132)(62,208,133)(63,209,134)(64,210,135)(65,211,136)(66,212,137)(67,213,138)(68,214,139)(69,215,140)(70,216,141)(71,217,142)(72,218,143)(73,219,144)(74,220,145)(75,221,146), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225), (2,75)(3,74)(4,73)(5,72)(6,71)(7,70)(8,69)(9,68)(10,67)(11,66)(12,65)(13,64)(14,63)(15,62)(16,61)(17,60)(18,59)(19,58)(20,57)(21,56)(22,55)(23,54)(24,53)(25,52)(26,51)(27,50)(28,49)(29,48)(30,47)(31,46)(32,45)(33,44)(34,43)(35,42)(36,41)(37,40)(38,39)(76,218)(77,217)(78,216)(79,215)(80,214)(81,213)(82,212)(83,211)(84,210)(85,209)(86,208)(87,207)(88,206)(89,205)(90,204)(91,203)(92,202)(93,201)(94,200)(95,199)(96,198)(97,197)(98,196)(99,195)(100,194)(101,193)(102,192)(103,191)(104,190)(105,189)(106,188)(107,187)(108,186)(109,185)(110,184)(111,183)(112,182)(113,181)(114,180)(115,179)(116,178)(117,177)(118,176)(119,175)(120,174)(121,173)(122,172)(123,171)(124,170)(125,169)(126,168)(127,167)(128,166)(129,165)(130,164)(131,163)(132,162)(133,161)(134,160)(135,159)(136,158)(137,157)(138,156)(139,155)(140,154)(141,153)(142,152)(143,151)(144,225)(145,224)(146,223)(147,222)(148,221)(149,220)(150,219) );
G=PermutationGroup([[(1,222,147),(2,223,148),(3,224,149),(4,225,150),(5,151,76),(6,152,77),(7,153,78),(8,154,79),(9,155,80),(10,156,81),(11,157,82),(12,158,83),(13,159,84),(14,160,85),(15,161,86),(16,162,87),(17,163,88),(18,164,89),(19,165,90),(20,166,91),(21,167,92),(22,168,93),(23,169,94),(24,170,95),(25,171,96),(26,172,97),(27,173,98),(28,174,99),(29,175,100),(30,176,101),(31,177,102),(32,178,103),(33,179,104),(34,180,105),(35,181,106),(36,182,107),(37,183,108),(38,184,109),(39,185,110),(40,186,111),(41,187,112),(42,188,113),(43,189,114),(44,190,115),(45,191,116),(46,192,117),(47,193,118),(48,194,119),(49,195,120),(50,196,121),(51,197,122),(52,198,123),(53,199,124),(54,200,125),(55,201,126),(56,202,127),(57,203,128),(58,204,129),(59,205,130),(60,206,131),(61,207,132),(62,208,133),(63,209,134),(64,210,135),(65,211,136),(66,212,137),(67,213,138),(68,214,139),(69,215,140),(70,216,141),(71,217,142),(72,218,143),(73,219,144),(74,220,145),(75,221,146)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225)], [(2,75),(3,74),(4,73),(5,72),(6,71),(7,70),(8,69),(9,68),(10,67),(11,66),(12,65),(13,64),(14,63),(15,62),(16,61),(17,60),(18,59),(19,58),(20,57),(21,56),(22,55),(23,54),(24,53),(25,52),(26,51),(27,50),(28,49),(29,48),(30,47),(31,46),(32,45),(33,44),(34,43),(35,42),(36,41),(37,40),(38,39),(76,218),(77,217),(78,216),(79,215),(80,214),(81,213),(82,212),(83,211),(84,210),(85,209),(86,208),(87,207),(88,206),(89,205),(90,204),(91,203),(92,202),(93,201),(94,200),(95,199),(96,198),(97,197),(98,196),(99,195),(100,194),(101,193),(102,192),(103,191),(104,190),(105,189),(106,188),(107,187),(108,186),(109,185),(110,184),(111,183),(112,182),(113,181),(114,180),(115,179),(116,178),(117,177),(118,176),(119,175),(120,174),(121,173),(122,172),(123,171),(124,170),(125,169),(126,168),(127,167),(128,166),(129,165),(130,164),(131,163),(132,162),(133,161),(134,160),(135,159),(136,158),(137,157),(138,156),(139,155),(140,154),(141,153),(142,152),(143,151),(144,225),(145,224),(146,223),(147,222),(148,221),(149,220),(150,219)]])
114 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 5A | 5B | 15A | ··· | 15P | 25A | ··· | 25J | 75A | ··· | 75CB |
order | 1 | 2 | 3 | 3 | 3 | 3 | 5 | 5 | 15 | ··· | 15 | 25 | ··· | 25 | 75 | ··· | 75 |
size | 1 | 225 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
114 irreducible representations
dim | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + |
image | C1 | C2 | S3 | D5 | D15 | D25 | D75 |
kernel | C3⋊D75 | C3×C75 | C75 | C3×C15 | C15 | C32 | C3 |
# reps | 1 | 1 | 4 | 2 | 16 | 10 | 80 |
Matrix representation of C3⋊D75 ►in GL4(𝔽151) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 44 | 102 |
0 | 0 | 62 | 106 |
24 | 119 | 0 | 0 |
32 | 14 | 0 | 0 |
0 | 0 | 63 | 48 |
0 | 0 | 118 | 30 |
70 | 30 | 0 | 0 |
33 | 81 | 0 | 0 |
0 | 0 | 123 | 124 |
0 | 0 | 29 | 28 |
G:=sub<GL(4,GF(151))| [1,0,0,0,0,1,0,0,0,0,44,62,0,0,102,106],[24,32,0,0,119,14,0,0,0,0,63,118,0,0,48,30],[70,33,0,0,30,81,0,0,0,0,123,29,0,0,124,28] >;
C3⋊D75 in GAP, Magma, Sage, TeX
C_3\rtimes D_{75}
% in TeX
G:=Group("C3:D75");
// GroupNames label
G:=SmallGroup(450,9);
// by ID
G=gap.SmallGroup(450,9);
# by ID
G:=PCGroup([5,-2,-3,-3,-5,-5,41,182,3243,418,9004]);
// Polycyclic
G:=Group<a,b,c|a^3=b^75=c^2=1,a*b=b*a,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export