Copied to
clipboard

G = C3×C5⋊D15order 450 = 2·32·52

Direct product of C3 and C5⋊D15

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C3×C5⋊D15, C152D15, C1522C2, C5⋊(C3×D15), (C5×C15)⋊5C6, (C5×C15)⋊6S3, (C3×C15)⋊2D5, C151(C3×D5), C525(C3×S3), C321(C5⋊D5), C3⋊(C3×C5⋊D5), SmallGroup(450,30)

Series: Derived Chief Lower central Upper central

C1C5×C15 — C3×C5⋊D15
C1C5C52C5×C15C152 — C3×C5⋊D15
C5×C15 — C3×C5⋊D15
C1C3

Generators and relations for C3×C5⋊D15
 G = < a,b,c,d | a3=b5=c15=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b-1, dcd=c-1 >

Subgroups: 496 in 72 conjugacy classes, 34 normal (10 characteristic)
C1, C2, C3, C3, C5, S3, C6, C32, D5, C15, C15, C3×S3, C52, C3×D5, D15, C3×C15, C5⋊D5, C5×C15, C5×C15, C3×D15, C3×C5⋊D5, C5⋊D15, C152, C3×C5⋊D15
Quotients: C1, C2, C3, S3, C6, D5, C3×S3, C3×D5, D15, C5⋊D5, C3×D15, C3×C5⋊D5, C5⋊D15, C3×C5⋊D15

Smallest permutation representation of C3×C5⋊D15
On 150 points
Generators in S150
(1 11 6)(2 12 7)(3 13 8)(4 14 9)(5 15 10)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)(31 36 41)(32 37 42)(33 38 43)(34 39 44)(35 40 45)(46 56 51)(47 57 52)(48 58 53)(49 59 54)(50 60 55)(61 66 71)(62 67 72)(63 68 73)(64 69 74)(65 70 75)(76 81 86)(77 82 87)(78 83 88)(79 84 89)(80 85 90)(91 96 101)(92 97 102)(93 98 103)(94 99 104)(95 100 105)(106 116 111)(107 117 112)(108 118 113)(109 119 114)(110 120 115)(121 131 126)(122 132 127)(123 133 128)(124 134 129)(125 135 130)(136 146 141)(137 147 142)(138 148 143)(139 149 144)(140 150 145)
(1 53 145 125 118)(2 54 146 126 119)(3 55 147 127 120)(4 56 148 128 106)(5 57 149 129 107)(6 58 150 130 108)(7 59 136 131 109)(8 60 137 132 110)(9 46 138 133 111)(10 47 139 134 112)(11 48 140 135 113)(12 49 141 121 114)(13 50 142 122 115)(14 51 143 123 116)(15 52 144 124 117)(16 44 67 98 83)(17 45 68 99 84)(18 31 69 100 85)(19 32 70 101 86)(20 33 71 102 87)(21 34 72 103 88)(22 35 73 104 89)(23 36 74 105 90)(24 37 75 91 76)(25 38 61 92 77)(26 39 62 93 78)(27 40 63 94 79)(28 41 64 95 80)(29 42 65 96 81)(30 43 66 97 82)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144 145 146 147 148 149 150)
(1 69)(2 68)(3 67)(4 66)(5 65)(6 64)(7 63)(8 62)(9 61)(10 75)(11 74)(12 73)(13 72)(14 71)(15 70)(16 147)(17 146)(18 145)(19 144)(20 143)(21 142)(22 141)(23 140)(24 139)(25 138)(26 137)(27 136)(28 150)(29 149)(30 148)(31 53)(32 52)(33 51)(34 50)(35 49)(36 48)(37 47)(38 46)(39 60)(40 59)(41 58)(42 57)(43 56)(44 55)(45 54)(76 134)(77 133)(78 132)(79 131)(80 130)(81 129)(82 128)(83 127)(84 126)(85 125)(86 124)(87 123)(88 122)(89 121)(90 135)(91 112)(92 111)(93 110)(94 109)(95 108)(96 107)(97 106)(98 120)(99 119)(100 118)(101 117)(102 116)(103 115)(104 114)(105 113)

G:=sub<Sym(150)| (1,11,6)(2,12,7)(3,13,8)(4,14,9)(5,15,10)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55)(61,66,71)(62,67,72)(63,68,73)(64,69,74)(65,70,75)(76,81,86)(77,82,87)(78,83,88)(79,84,89)(80,85,90)(91,96,101)(92,97,102)(93,98,103)(94,99,104)(95,100,105)(106,116,111)(107,117,112)(108,118,113)(109,119,114)(110,120,115)(121,131,126)(122,132,127)(123,133,128)(124,134,129)(125,135,130)(136,146,141)(137,147,142)(138,148,143)(139,149,144)(140,150,145), (1,53,145,125,118)(2,54,146,126,119)(3,55,147,127,120)(4,56,148,128,106)(5,57,149,129,107)(6,58,150,130,108)(7,59,136,131,109)(8,60,137,132,110)(9,46,138,133,111)(10,47,139,134,112)(11,48,140,135,113)(12,49,141,121,114)(13,50,142,122,115)(14,51,143,123,116)(15,52,144,124,117)(16,44,67,98,83)(17,45,68,99,84)(18,31,69,100,85)(19,32,70,101,86)(20,33,71,102,87)(21,34,72,103,88)(22,35,73,104,89)(23,36,74,105,90)(24,37,75,91,76)(25,38,61,92,77)(26,39,62,93,78)(27,40,63,94,79)(28,41,64,95,80)(29,42,65,96,81)(30,43,66,97,82), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150), (1,69)(2,68)(3,67)(4,66)(5,65)(6,64)(7,63)(8,62)(9,61)(10,75)(11,74)(12,73)(13,72)(14,71)(15,70)(16,147)(17,146)(18,145)(19,144)(20,143)(21,142)(22,141)(23,140)(24,139)(25,138)(26,137)(27,136)(28,150)(29,149)(30,148)(31,53)(32,52)(33,51)(34,50)(35,49)(36,48)(37,47)(38,46)(39,60)(40,59)(41,58)(42,57)(43,56)(44,55)(45,54)(76,134)(77,133)(78,132)(79,131)(80,130)(81,129)(82,128)(83,127)(84,126)(85,125)(86,124)(87,123)(88,122)(89,121)(90,135)(91,112)(92,111)(93,110)(94,109)(95,108)(96,107)(97,106)(98,120)(99,119)(100,118)(101,117)(102,116)(103,115)(104,114)(105,113)>;

G:=Group( (1,11,6)(2,12,7)(3,13,8)(4,14,9)(5,15,10)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55)(61,66,71)(62,67,72)(63,68,73)(64,69,74)(65,70,75)(76,81,86)(77,82,87)(78,83,88)(79,84,89)(80,85,90)(91,96,101)(92,97,102)(93,98,103)(94,99,104)(95,100,105)(106,116,111)(107,117,112)(108,118,113)(109,119,114)(110,120,115)(121,131,126)(122,132,127)(123,133,128)(124,134,129)(125,135,130)(136,146,141)(137,147,142)(138,148,143)(139,149,144)(140,150,145), (1,53,145,125,118)(2,54,146,126,119)(3,55,147,127,120)(4,56,148,128,106)(5,57,149,129,107)(6,58,150,130,108)(7,59,136,131,109)(8,60,137,132,110)(9,46,138,133,111)(10,47,139,134,112)(11,48,140,135,113)(12,49,141,121,114)(13,50,142,122,115)(14,51,143,123,116)(15,52,144,124,117)(16,44,67,98,83)(17,45,68,99,84)(18,31,69,100,85)(19,32,70,101,86)(20,33,71,102,87)(21,34,72,103,88)(22,35,73,104,89)(23,36,74,105,90)(24,37,75,91,76)(25,38,61,92,77)(26,39,62,93,78)(27,40,63,94,79)(28,41,64,95,80)(29,42,65,96,81)(30,43,66,97,82), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150), (1,69)(2,68)(3,67)(4,66)(5,65)(6,64)(7,63)(8,62)(9,61)(10,75)(11,74)(12,73)(13,72)(14,71)(15,70)(16,147)(17,146)(18,145)(19,144)(20,143)(21,142)(22,141)(23,140)(24,139)(25,138)(26,137)(27,136)(28,150)(29,149)(30,148)(31,53)(32,52)(33,51)(34,50)(35,49)(36,48)(37,47)(38,46)(39,60)(40,59)(41,58)(42,57)(43,56)(44,55)(45,54)(76,134)(77,133)(78,132)(79,131)(80,130)(81,129)(82,128)(83,127)(84,126)(85,125)(86,124)(87,123)(88,122)(89,121)(90,135)(91,112)(92,111)(93,110)(94,109)(95,108)(96,107)(97,106)(98,120)(99,119)(100,118)(101,117)(102,116)(103,115)(104,114)(105,113) );

G=PermutationGroup([[(1,11,6),(2,12,7),(3,13,8),(4,14,9),(5,15,10),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30),(31,36,41),(32,37,42),(33,38,43),(34,39,44),(35,40,45),(46,56,51),(47,57,52),(48,58,53),(49,59,54),(50,60,55),(61,66,71),(62,67,72),(63,68,73),(64,69,74),(65,70,75),(76,81,86),(77,82,87),(78,83,88),(79,84,89),(80,85,90),(91,96,101),(92,97,102),(93,98,103),(94,99,104),(95,100,105),(106,116,111),(107,117,112),(108,118,113),(109,119,114),(110,120,115),(121,131,126),(122,132,127),(123,133,128),(124,134,129),(125,135,130),(136,146,141),(137,147,142),(138,148,143),(139,149,144),(140,150,145)], [(1,53,145,125,118),(2,54,146,126,119),(3,55,147,127,120),(4,56,148,128,106),(5,57,149,129,107),(6,58,150,130,108),(7,59,136,131,109),(8,60,137,132,110),(9,46,138,133,111),(10,47,139,134,112),(11,48,140,135,113),(12,49,141,121,114),(13,50,142,122,115),(14,51,143,123,116),(15,52,144,124,117),(16,44,67,98,83),(17,45,68,99,84),(18,31,69,100,85),(19,32,70,101,86),(20,33,71,102,87),(21,34,72,103,88),(22,35,73,104,89),(23,36,74,105,90),(24,37,75,91,76),(25,38,61,92,77),(26,39,62,93,78),(27,40,63,94,79),(28,41,64,95,80),(29,42,65,96,81),(30,43,66,97,82)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)], [(1,69),(2,68),(3,67),(4,66),(5,65),(6,64),(7,63),(8,62),(9,61),(10,75),(11,74),(12,73),(13,72),(14,71),(15,70),(16,147),(17,146),(18,145),(19,144),(20,143),(21,142),(22,141),(23,140),(24,139),(25,138),(26,137),(27,136),(28,150),(29,149),(30,148),(31,53),(32,52),(33,51),(34,50),(35,49),(36,48),(37,47),(38,46),(39,60),(40,59),(41,58),(42,57),(43,56),(44,55),(45,54),(76,134),(77,133),(78,132),(79,131),(80,130),(81,129),(82,128),(83,127),(84,126),(85,125),(86,124),(87,123),(88,122),(89,121),(90,135),(91,112),(92,111),(93,110),(94,109),(95,108),(96,107),(97,106),(98,120),(99,119),(100,118),(101,117),(102,116),(103,115),(104,114),(105,113)]])

117 conjugacy classes

class 1  2 3A3B3C3D3E5A···5L6A6B15A···15CR
order12333335···56615···15
size175112222···275752···2

117 irreducible representations

dim1111222222
type+++++
imageC1C2C3C6S3D5C3×S3C3×D5D15C3×D15
kernelC3×C5⋊D15C152C5⋊D15C5×C15C5×C15C3×C15C52C15C15C5
# reps11221122242448

Matrix representation of C3×C5⋊D15 in GL4(𝔽31) generated by

5000
0500
00250
00025
,
16000
17200
00222
00016
,
18000
11900
00145
00020
,
262600
11500
00222
002129
G:=sub<GL(4,GF(31))| [5,0,0,0,0,5,0,0,0,0,25,0,0,0,0,25],[16,17,0,0,0,2,0,0,0,0,2,0,0,0,22,16],[18,1,0,0,0,19,0,0,0,0,14,0,0,0,5,20],[26,11,0,0,26,5,0,0,0,0,2,21,0,0,22,29] >;

C3×C5⋊D15 in GAP, Magma, Sage, TeX

C_3\times C_5\rtimes D_{15}
% in TeX

G:=Group("C3xC5:D15");
// GroupNames label

G:=SmallGroup(450,30);
// by ID

G=gap.SmallGroup(450,30);
# by ID

G:=PCGroup([5,-2,-3,-3,-5,-5,182,1443,9004]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^5=c^15=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽