Extensions 1→N→G→Q→1 with N=C4 and Q=D58

Direct product G=N×Q with N=C4 and Q=D58
dρLabelID
C2×C4×D29232C2xC4xD29464,36

Semidirect products G=N:Q with N=C4 and Q=D58
extensionφ:Q→Aut NdρLabelID
C41D58 = D4×D29φ: D58/D29C2 ⊆ Aut C41164+C4:1D58464,39
C42D58 = C2×D116φ: D58/C58C2 ⊆ Aut C4232C4:2D58464,37

Non-split extensions G=N.Q with N=C4 and Q=D58
extensionφ:Q→Aut NdρLabelID
C4.1D58 = D4⋊D29φ: D58/D29C2 ⊆ Aut C42324+C4.1D58464,15
C4.2D58 = D4.D29φ: D58/D29C2 ⊆ Aut C42324-C4.2D58464,16
C4.3D58 = Q8⋊D29φ: D58/D29C2 ⊆ Aut C42324+C4.3D58464,17
C4.4D58 = C29⋊Q16φ: D58/D29C2 ⊆ Aut C44644-C4.4D58464,18
C4.5D58 = D42D29φ: D58/D29C2 ⊆ Aut C42324-C4.5D58464,40
C4.6D58 = Q8×D29φ: D58/D29C2 ⊆ Aut C42324-C4.6D58464,41
C4.7D58 = Q82D29φ: D58/D29C2 ⊆ Aut C42324+C4.7D58464,42
C4.8D58 = C232⋊C2φ: D58/C58C2 ⊆ Aut C42322C4.8D58464,6
C4.9D58 = D232φ: D58/C58C2 ⊆ Aut C42322+C4.9D58464,7
C4.10D58 = Dic116φ: D58/C58C2 ⊆ Aut C44642-C4.10D58464,8
C4.11D58 = C2×Dic58φ: D58/C58C2 ⊆ Aut C4464C4.11D58464,35
C4.12D58 = C8×D29central extension (φ=1)2322C4.12D58464,4
C4.13D58 = C8⋊D29central extension (φ=1)2322C4.13D58464,5
C4.14D58 = C2×C292C8central extension (φ=1)464C4.14D58464,9
C4.15D58 = C4.Dic29central extension (φ=1)2322C4.15D58464,10
C4.16D58 = D1165C2central extension (φ=1)2322C4.16D58464,38

׿
×
𝔽