Copied to
clipboard

G = D4×D29order 464 = 24·29

Direct product of D4 and D29

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4×D29, C41D58, C116⋊C22, D1163C2, C221D58, D582C22, C58.5C23, Dic291C22, C292(C2×D4), (C2×C58)⋊C22, (C4×D29)⋊1C2, (D4×C29)⋊2C2, C29⋊D41C2, (C22×D29)⋊2C2, C2.6(C22×D29), SmallGroup(464,39)

Series: Derived Chief Lower central Upper central

C1C58 — D4×D29
C1C29C58D58C22×D29 — D4×D29
C29C58 — D4×D29
C1C2D4

Generators and relations for D4×D29
 G = < a,b,c,d | a4=b2=c29=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 770 in 54 conjugacy classes, 25 normal (13 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, D4, D4, C23, C2×D4, C29, D29, D29, C58, C58, Dic29, C116, D58, D58, D58, C2×C58, C4×D29, D116, C29⋊D4, D4×C29, C22×D29, D4×D29
Quotients: C1, C2, C22, D4, C23, C2×D4, D29, D58, C22×D29, D4×D29

Smallest permutation representation of D4×D29
On 116 points
Generators in S116
(1 108 53 61)(2 109 54 62)(3 110 55 63)(4 111 56 64)(5 112 57 65)(6 113 58 66)(7 114 30 67)(8 115 31 68)(9 116 32 69)(10 88 33 70)(11 89 34 71)(12 90 35 72)(13 91 36 73)(14 92 37 74)(15 93 38 75)(16 94 39 76)(17 95 40 77)(18 96 41 78)(19 97 42 79)(20 98 43 80)(21 99 44 81)(22 100 45 82)(23 101 46 83)(24 102 47 84)(25 103 48 85)(26 104 49 86)(27 105 50 87)(28 106 51 59)(29 107 52 60)
(1 61)(2 62)(3 63)(4 64)(5 65)(6 66)(7 67)(8 68)(9 69)(10 70)(11 71)(12 72)(13 73)(14 74)(15 75)(16 76)(17 77)(18 78)(19 79)(20 80)(21 81)(22 82)(23 83)(24 84)(25 85)(26 86)(27 87)(28 59)(29 60)(30 114)(31 115)(32 116)(33 88)(34 89)(35 90)(36 91)(37 92)(38 93)(39 94)(40 95)(41 96)(42 97)(43 98)(44 99)(45 100)(46 101)(47 102)(48 103)(49 104)(50 105)(51 106)(52 107)(53 108)(54 109)(55 110)(56 111)(57 112)(58 113)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29)(30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58)(59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87)(88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116)
(1 29)(2 28)(3 27)(4 26)(5 25)(6 24)(7 23)(8 22)(9 21)(10 20)(11 19)(12 18)(13 17)(14 16)(30 46)(31 45)(32 44)(33 43)(34 42)(35 41)(36 40)(37 39)(47 58)(48 57)(49 56)(50 55)(51 54)(52 53)(59 62)(60 61)(63 87)(64 86)(65 85)(66 84)(67 83)(68 82)(69 81)(70 80)(71 79)(72 78)(73 77)(74 76)(88 98)(89 97)(90 96)(91 95)(92 94)(99 116)(100 115)(101 114)(102 113)(103 112)(104 111)(105 110)(106 109)(107 108)

G:=sub<Sym(116)| (1,108,53,61)(2,109,54,62)(3,110,55,63)(4,111,56,64)(5,112,57,65)(6,113,58,66)(7,114,30,67)(8,115,31,68)(9,116,32,69)(10,88,33,70)(11,89,34,71)(12,90,35,72)(13,91,36,73)(14,92,37,74)(15,93,38,75)(16,94,39,76)(17,95,40,77)(18,96,41,78)(19,97,42,79)(20,98,43,80)(21,99,44,81)(22,100,45,82)(23,101,46,83)(24,102,47,84)(25,103,48,85)(26,104,49,86)(27,105,50,87)(28,106,51,59)(29,107,52,60), (1,61)(2,62)(3,63)(4,64)(5,65)(6,66)(7,67)(8,68)(9,69)(10,70)(11,71)(12,72)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,79)(20,80)(21,81)(22,82)(23,83)(24,84)(25,85)(26,86)(27,87)(28,59)(29,60)(30,114)(31,115)(32,116)(33,88)(34,89)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(41,96)(42,97)(43,98)(44,99)(45,100)(46,101)(47,102)(48,103)(49,104)(50,105)(51,106)(52,107)(53,108)(54,109)(55,110)(56,111)(57,112)(58,113), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29)(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58)(59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87)(88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116), (1,29)(2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,20)(11,19)(12,18)(13,17)(14,16)(30,46)(31,45)(32,44)(33,43)(34,42)(35,41)(36,40)(37,39)(47,58)(48,57)(49,56)(50,55)(51,54)(52,53)(59,62)(60,61)(63,87)(64,86)(65,85)(66,84)(67,83)(68,82)(69,81)(70,80)(71,79)(72,78)(73,77)(74,76)(88,98)(89,97)(90,96)(91,95)(92,94)(99,116)(100,115)(101,114)(102,113)(103,112)(104,111)(105,110)(106,109)(107,108)>;

G:=Group( (1,108,53,61)(2,109,54,62)(3,110,55,63)(4,111,56,64)(5,112,57,65)(6,113,58,66)(7,114,30,67)(8,115,31,68)(9,116,32,69)(10,88,33,70)(11,89,34,71)(12,90,35,72)(13,91,36,73)(14,92,37,74)(15,93,38,75)(16,94,39,76)(17,95,40,77)(18,96,41,78)(19,97,42,79)(20,98,43,80)(21,99,44,81)(22,100,45,82)(23,101,46,83)(24,102,47,84)(25,103,48,85)(26,104,49,86)(27,105,50,87)(28,106,51,59)(29,107,52,60), (1,61)(2,62)(3,63)(4,64)(5,65)(6,66)(7,67)(8,68)(9,69)(10,70)(11,71)(12,72)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,79)(20,80)(21,81)(22,82)(23,83)(24,84)(25,85)(26,86)(27,87)(28,59)(29,60)(30,114)(31,115)(32,116)(33,88)(34,89)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(41,96)(42,97)(43,98)(44,99)(45,100)(46,101)(47,102)(48,103)(49,104)(50,105)(51,106)(52,107)(53,108)(54,109)(55,110)(56,111)(57,112)(58,113), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29)(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58)(59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87)(88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116), (1,29)(2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,20)(11,19)(12,18)(13,17)(14,16)(30,46)(31,45)(32,44)(33,43)(34,42)(35,41)(36,40)(37,39)(47,58)(48,57)(49,56)(50,55)(51,54)(52,53)(59,62)(60,61)(63,87)(64,86)(65,85)(66,84)(67,83)(68,82)(69,81)(70,80)(71,79)(72,78)(73,77)(74,76)(88,98)(89,97)(90,96)(91,95)(92,94)(99,116)(100,115)(101,114)(102,113)(103,112)(104,111)(105,110)(106,109)(107,108) );

G=PermutationGroup([[(1,108,53,61),(2,109,54,62),(3,110,55,63),(4,111,56,64),(5,112,57,65),(6,113,58,66),(7,114,30,67),(8,115,31,68),(9,116,32,69),(10,88,33,70),(11,89,34,71),(12,90,35,72),(13,91,36,73),(14,92,37,74),(15,93,38,75),(16,94,39,76),(17,95,40,77),(18,96,41,78),(19,97,42,79),(20,98,43,80),(21,99,44,81),(22,100,45,82),(23,101,46,83),(24,102,47,84),(25,103,48,85),(26,104,49,86),(27,105,50,87),(28,106,51,59),(29,107,52,60)], [(1,61),(2,62),(3,63),(4,64),(5,65),(6,66),(7,67),(8,68),(9,69),(10,70),(11,71),(12,72),(13,73),(14,74),(15,75),(16,76),(17,77),(18,78),(19,79),(20,80),(21,81),(22,82),(23,83),(24,84),(25,85),(26,86),(27,87),(28,59),(29,60),(30,114),(31,115),(32,116),(33,88),(34,89),(35,90),(36,91),(37,92),(38,93),(39,94),(40,95),(41,96),(42,97),(43,98),(44,99),(45,100),(46,101),(47,102),(48,103),(49,104),(50,105),(51,106),(52,107),(53,108),(54,109),(55,110),(56,111),(57,112),(58,113)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29),(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58),(59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87),(88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116)], [(1,29),(2,28),(3,27),(4,26),(5,25),(6,24),(7,23),(8,22),(9,21),(10,20),(11,19),(12,18),(13,17),(14,16),(30,46),(31,45),(32,44),(33,43),(34,42),(35,41),(36,40),(37,39),(47,58),(48,57),(49,56),(50,55),(51,54),(52,53),(59,62),(60,61),(63,87),(64,86),(65,85),(66,84),(67,83),(68,82),(69,81),(70,80),(71,79),(72,78),(73,77),(74,76),(88,98),(89,97),(90,96),(91,95),(92,94),(99,116),(100,115),(101,114),(102,113),(103,112),(104,111),(105,110),(106,109),(107,108)]])

80 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B29A···29N58A···58N58O···58AP116A···116N
order122222224429···2958···5858···58116···116
size1122292958582582···22···24···44···4

80 irreducible representations

dim11111122224
type+++++++++++
imageC1C2C2C2C2C2D4D29D58D58D4×D29
kernelD4×D29C4×D29D116C29⋊D4D4×C29C22×D29D29D4C4C22C1
# reps111212214142814

Matrix representation of D4×D29 in GL4(𝔽233) generated by

1000
0100
00136
00220232
,
1000
0100
00136
000232
,
0100
23212200
0010
0001
,
0100
1000
0010
0001
G:=sub<GL(4,GF(233))| [1,0,0,0,0,1,0,0,0,0,1,220,0,0,36,232],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,36,232],[0,232,0,0,1,122,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1] >;

D4×D29 in GAP, Magma, Sage, TeX

D_4\times D_{29}
% in TeX

G:=Group("D4xD29");
// GroupNames label

G:=SmallGroup(464,39);
// by ID

G=gap.SmallGroup(464,39);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-29,97,11204]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^29=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽