Extensions 1→N→G→Q→1 with N=C38 and Q=C2×C6

Direct product G=N×Q with N=C38 and Q=C2×C6
dρLabelID
C22×C114456C2^2xC114456,54

Semidirect products G=N:Q with N=C38 and Q=C2×C6
extensionφ:Q→Aut NdρLabelID
C38⋊(C2×C6) = C22×C19⋊C6φ: C2×C6/C2C6 ⊆ Aut C3876C38:(C2xC6)456,44
C382(C2×C6) = C23×C19⋊C3φ: C2×C6/C22C3 ⊆ Aut C38152C38:2(C2xC6)456,48
C383(C2×C6) = C2×C6×D19φ: C2×C6/C6C2 ⊆ Aut C38228C38:3(C2xC6)456,51

Non-split extensions G=N.Q with N=C38 and Q=C2×C6
extensionφ:Q→Aut NdρLabelID
C38.1(C2×C6) = Dic38⋊C3φ: C2×C6/C2C6 ⊆ Aut C381526-C38.1(C2xC6)456,7
C38.2(C2×C6) = C4×C19⋊C6φ: C2×C6/C2C6 ⊆ Aut C38766C38.2(C2xC6)456,8
C38.3(C2×C6) = D76⋊C3φ: C2×C6/C2C6 ⊆ Aut C38766+C38.3(C2xC6)456,9
C38.4(C2×C6) = C2×C19⋊C12φ: C2×C6/C2C6 ⊆ Aut C38152C38.4(C2xC6)456,10
C38.5(C2×C6) = D38⋊C6φ: C2×C6/C2C6 ⊆ Aut C38766C38.5(C2xC6)456,11
C38.6(C2×C6) = C2×C4×C19⋊C3φ: C2×C6/C22C3 ⊆ Aut C38152C38.6(C2xC6)456,19
C38.7(C2×C6) = D4×C19⋊C3φ: C2×C6/C22C3 ⊆ Aut C38766C38.7(C2xC6)456,20
C38.8(C2×C6) = Q8×C19⋊C3φ: C2×C6/C22C3 ⊆ Aut C381526C38.8(C2xC6)456,21
C38.9(C2×C6) = C3×Dic38φ: C2×C6/C6C2 ⊆ Aut C384562C38.9(C2xC6)456,24
C38.10(C2×C6) = C12×D19φ: C2×C6/C6C2 ⊆ Aut C382282C38.10(C2xC6)456,25
C38.11(C2×C6) = C3×D76φ: C2×C6/C6C2 ⊆ Aut C382282C38.11(C2xC6)456,26
C38.12(C2×C6) = C6×Dic19φ: C2×C6/C6C2 ⊆ Aut C38456C38.12(C2xC6)456,27
C38.13(C2×C6) = C3×C19⋊D4φ: C2×C6/C6C2 ⊆ Aut C382282C38.13(C2xC6)456,28
C38.14(C2×C6) = D4×C57central extension (φ=1)2282C38.14(C2xC6)456,40
C38.15(C2×C6) = Q8×C57central extension (φ=1)4562C38.15(C2xC6)456,41

׿
×
𝔽