extension | φ:Q→Aut N | d | ρ | Label | ID |
C38.1(C2×C6) = Dic38⋊C3 | φ: C2×C6/C2 → C6 ⊆ Aut C38 | 152 | 6- | C38.1(C2xC6) | 456,7 |
C38.2(C2×C6) = C4×C19⋊C6 | φ: C2×C6/C2 → C6 ⊆ Aut C38 | 76 | 6 | C38.2(C2xC6) | 456,8 |
C38.3(C2×C6) = D76⋊C3 | φ: C2×C6/C2 → C6 ⊆ Aut C38 | 76 | 6+ | C38.3(C2xC6) | 456,9 |
C38.4(C2×C6) = C2×C19⋊C12 | φ: C2×C6/C2 → C6 ⊆ Aut C38 | 152 | | C38.4(C2xC6) | 456,10 |
C38.5(C2×C6) = D38⋊C6 | φ: C2×C6/C2 → C6 ⊆ Aut C38 | 76 | 6 | C38.5(C2xC6) | 456,11 |
C38.6(C2×C6) = C2×C4×C19⋊C3 | φ: C2×C6/C22 → C3 ⊆ Aut C38 | 152 | | C38.6(C2xC6) | 456,19 |
C38.7(C2×C6) = D4×C19⋊C3 | φ: C2×C6/C22 → C3 ⊆ Aut C38 | 76 | 6 | C38.7(C2xC6) | 456,20 |
C38.8(C2×C6) = Q8×C19⋊C3 | φ: C2×C6/C22 → C3 ⊆ Aut C38 | 152 | 6 | C38.8(C2xC6) | 456,21 |
C38.9(C2×C6) = C3×Dic38 | φ: C2×C6/C6 → C2 ⊆ Aut C38 | 456 | 2 | C38.9(C2xC6) | 456,24 |
C38.10(C2×C6) = C12×D19 | φ: C2×C6/C6 → C2 ⊆ Aut C38 | 228 | 2 | C38.10(C2xC6) | 456,25 |
C38.11(C2×C6) = C3×D76 | φ: C2×C6/C6 → C2 ⊆ Aut C38 | 228 | 2 | C38.11(C2xC6) | 456,26 |
C38.12(C2×C6) = C6×Dic19 | φ: C2×C6/C6 → C2 ⊆ Aut C38 | 456 | | C38.12(C2xC6) | 456,27 |
C38.13(C2×C6) = C3×C19⋊D4 | φ: C2×C6/C6 → C2 ⊆ Aut C38 | 228 | 2 | C38.13(C2xC6) | 456,28 |
C38.14(C2×C6) = D4×C57 | central extension (φ=1) | 228 | 2 | C38.14(C2xC6) | 456,40 |
C38.15(C2×C6) = Q8×C57 | central extension (φ=1) | 456 | 2 | C38.15(C2xC6) | 456,41 |