extension | φ:Q→Aut N | d | ρ | Label | ID |
C38.1(C2xC6) = Dic38:C3 | φ: C2xC6/C2 → C6 ⊆ Aut C38 | 152 | 6- | C38.1(C2xC6) | 456,7 |
C38.2(C2xC6) = C4xC19:C6 | φ: C2xC6/C2 → C6 ⊆ Aut C38 | 76 | 6 | C38.2(C2xC6) | 456,8 |
C38.3(C2xC6) = D76:C3 | φ: C2xC6/C2 → C6 ⊆ Aut C38 | 76 | 6+ | C38.3(C2xC6) | 456,9 |
C38.4(C2xC6) = C2xC19:C12 | φ: C2xC6/C2 → C6 ⊆ Aut C38 | 152 | | C38.4(C2xC6) | 456,10 |
C38.5(C2xC6) = D38:C6 | φ: C2xC6/C2 → C6 ⊆ Aut C38 | 76 | 6 | C38.5(C2xC6) | 456,11 |
C38.6(C2xC6) = C2xC4xC19:C3 | φ: C2xC6/C22 → C3 ⊆ Aut C38 | 152 | | C38.6(C2xC6) | 456,19 |
C38.7(C2xC6) = D4xC19:C3 | φ: C2xC6/C22 → C3 ⊆ Aut C38 | 76 | 6 | C38.7(C2xC6) | 456,20 |
C38.8(C2xC6) = Q8xC19:C3 | φ: C2xC6/C22 → C3 ⊆ Aut C38 | 152 | 6 | C38.8(C2xC6) | 456,21 |
C38.9(C2xC6) = C3xDic38 | φ: C2xC6/C6 → C2 ⊆ Aut C38 | 456 | 2 | C38.9(C2xC6) | 456,24 |
C38.10(C2xC6) = C12xD19 | φ: C2xC6/C6 → C2 ⊆ Aut C38 | 228 | 2 | C38.10(C2xC6) | 456,25 |
C38.11(C2xC6) = C3xD76 | φ: C2xC6/C6 → C2 ⊆ Aut C38 | 228 | 2 | C38.11(C2xC6) | 456,26 |
C38.12(C2xC6) = C6xDic19 | φ: C2xC6/C6 → C2 ⊆ Aut C38 | 456 | | C38.12(C2xC6) | 456,27 |
C38.13(C2xC6) = C3xC19:D4 | φ: C2xC6/C6 → C2 ⊆ Aut C38 | 228 | 2 | C38.13(C2xC6) | 456,28 |
C38.14(C2xC6) = D4xC57 | central extension (φ=1) | 228 | 2 | C38.14(C2xC6) | 456,40 |
C38.15(C2xC6) = Q8xC57 | central extension (φ=1) | 456 | 2 | C38.15(C2xC6) | 456,41 |