Copied to
clipboard

G = D38⋊C6order 456 = 23·3·19

2nd semidirect product of D38 and C6 acting faithfully

metabelian, supersoluble, monomial

Aliases: D382C6, Dic19⋊C6, C19⋊C12⋊C2, C19⋊C32D4, C19⋊D4⋊C3, C192(C3×D4), (C2×C38)⋊3C6, C38.5(C2×C6), C222(C19⋊C6), (C2×C19⋊C6)⋊2C2, C2.5(C2×C19⋊C6), (C22×C19⋊C3)⋊1C2, (C2×C19⋊C3).5C22, SmallGroup(456,11)

Series: Derived Chief Lower central Upper central

C1C38 — D38⋊C6
C1C19C38C2×C19⋊C3C2×C19⋊C6 — D38⋊C6
C19C38 — D38⋊C6
C1C2C22

Generators and relations for D38⋊C6
 G = < a,b,c | a38=b2=c6=1, bab=a-1, cac-1=a7, cbc-1=a25b >

2C2
38C2
19C3
19C22
19C4
19C6
38C6
38C6
2D19
2C38
19D4
19C2×C6
19C2×C6
19C12
2C2×C19⋊C3
2C19⋊C6
19C3×D4

Character table of D38⋊C6

 class 12A2B2C3A3B46A6B6C6D6E6F12A12B19A19B19C38A38B38C38D38E38F38G38H38I
 size 112381919381919383838383838666666666666
ρ1111111111111111111111111111    trivial
ρ211-1-111111-1-1-1-111111-11-1-1-111-1-1    linear of order 2
ρ3111-111-1111-1-11-1-1111111111111    linear of order 2
ρ411-1111-111-111-1-1-1111-11-1-1-111-1-1    linear of order 2
ρ5111-1ζ32ζ3-1ζ32ζ3ζ32ζ6ζ65ζ3ζ65ζ6111111111111    linear of order 6
ρ611-1-1ζ32ζ31ζ32ζ3ζ6ζ6ζ65ζ65ζ3ζ32111-11-1-1-111-1-1    linear of order 6
ρ7111-1ζ3ζ32-1ζ3ζ32ζ3ζ65ζ6ζ32ζ6ζ65111111111111    linear of order 6
ρ811-11ζ3ζ32-1ζ3ζ32ζ65ζ3ζ32ζ6ζ6ζ65111-11-1-1-111-1-1    linear of order 6
ρ91111ζ32ζ31ζ32ζ3ζ32ζ32ζ3ζ3ζ3ζ32111111111111    linear of order 3
ρ101111ζ3ζ321ζ3ζ32ζ3ζ3ζ32ζ32ζ32ζ3111111111111    linear of order 3
ρ1111-11ζ32ζ3-1ζ32ζ3ζ6ζ32ζ3ζ65ζ65ζ6111-11-1-1-111-1-1    linear of order 6
ρ1211-1-1ζ3ζ321ζ3ζ32ζ65ζ65ζ6ζ6ζ32ζ3111-11-1-1-111-1-1    linear of order 6
ρ132-200220-2-20000002220-2000-2-200    orthogonal lifted from D4
ρ142-200-1--3-1+-301+-31--30000002220-2000-2-200    complex lifted from C3×D4
ρ152-200-1+-3-1--301--31+-30000002220-2000-2-200    complex lifted from C3×D4
ρ1666-6000000000000ζ191519131910199196194ζ19181912191119819719ζ191719161914195193192191719161914195193192ζ19171916191419519319219181912191119819719191519131910199196194191719161914195193192ζ191519131910199196194ζ1918191219111981971919151913191019919619419181912191119819719    orthogonal lifted from C2×C19⋊C6
ρ17666000000000000ζ191519131910199196194ζ19181912191119819719ζ191719161914195193192ζ191719161914195193192ζ191719161914195193192ζ19181912191119819719ζ191519131910199196194ζ191719161914195193192ζ191519131910199196194ζ19181912191119819719ζ191519131910199196194ζ19181912191119819719    orthogonal lifted from C19⋊C6
ρ18666000000000000ζ19181912191119819719ζ191719161914195193192ζ191519131910199196194ζ191519131910199196194ζ191519131910199196194ζ191719161914195193192ζ19181912191119819719ζ191519131910199196194ζ19181912191119819719ζ191719161914195193192ζ19181912191119819719ζ191719161914195193192    orthogonal lifted from C19⋊C6
ρ1966-6000000000000ζ19181912191119819719ζ191719161914195193192ζ191519131910199196194191519131910199196194ζ19151913191019919619419171916191419519319219181912191119819719191519131910199196194ζ19181912191119819719ζ19171916191419519319219181912191119819719191719161914195193192    orthogonal lifted from C2×C19⋊C6
ρ2066-6000000000000ζ191719161914195193192ζ191519131910199196194ζ1918191219111981971919181912191119819719ζ1918191219111981971919151913191019919619419171916191419519319219181912191119819719ζ191719161914195193192ζ191519131910199196194191719161914195193192191519131910199196194    orthogonal lifted from C2×C19⋊C6
ρ21666000000000000ζ191719161914195193192ζ191519131910199196194ζ19181912191119819719ζ19181912191119819719ζ19181912191119819719ζ191519131910199196194ζ191719161914195193192ζ19181912191119819719ζ191719161914195193192ζ191519131910199196194ζ191719161914195193192ζ191519131910199196194    orthogonal lifted from C19⋊C6
ρ226-60000000000000ζ191719161914195193192ζ191519131910199196194ζ19181912191119819719ζ1918191219111981971919181912191119819719ζ191519131910199196194ζ19171916191419519319219181912191119819719191719161914195193192191519131910199196194191719161914195193192191519131910199196194    complex faithful
ρ236-60000000000000ζ191519131910199196194ζ19181912191119819719ζ191719161914195193192191719161914195193192191719161914195193192ζ19181912191119819719191519131910199196194ζ19171916191419519319219151913191019919619419181912191119819719ζ19151913191019919619419181912191119819719    complex faithful
ρ246-60000000000000ζ191519131910199196194ζ19181912191119819719ζ191719161914195193192ζ19171916191419519319219171916191419519319219181912191119819719ζ19151913191019919619419171916191419519319219151913191019919619419181912191119819719191519131910199196194ζ19181912191119819719    complex faithful
ρ256-60000000000000ζ191719161914195193192ζ191519131910199196194ζ191819121911198197191918191219111981971919181912191119819719191519131910199196194191719161914195193192ζ19181912191119819719191719161914195193192191519131910199196194ζ191719161914195193192ζ191519131910199196194    complex faithful
ρ266-60000000000000ζ19181912191119819719ζ191719161914195193192ζ191519131910199196194ζ1915191319101991961941915191319101991961941917191619141951931921918191219111981971919151913191019919619419181912191119819719191719161914195193192ζ19181912191119819719ζ191719161914195193192    complex faithful
ρ276-60000000000000ζ19181912191119819719ζ191719161914195193192ζ191519131910199196194191519131910199196194191519131910199196194ζ191719161914195193192ζ19181912191119819719ζ1915191319101991961941918191219111981971919171916191419519319219181912191119819719191719161914195193192    complex faithful

Smallest permutation representation of D38⋊C6
On 76 points
Generators in S76
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)
(1 38)(2 37)(3 36)(4 35)(5 34)(6 33)(7 32)(8 31)(9 30)(10 29)(11 28)(12 27)(13 26)(14 25)(15 24)(16 23)(17 22)(18 21)(19 20)(39 57)(40 56)(41 55)(42 54)(43 53)(44 52)(45 51)(46 50)(47 49)(58 76)(59 75)(60 74)(61 73)(62 72)(63 71)(64 70)(65 69)(66 68)
(1 39)(2 50 8 40 12 46)(3 61 15 41 23 53)(4 72 22 42 34 60)(5 45 29 43 7 67)(6 56 36 44 18 74)(9 51 19 47 13 57)(10 62 26 48 24 64)(11 73 33 49 35 71)(14 68 16 52 30 54)(17 63 37 55 25 75)(20 58)(21 69 27 59 31 65)(28 70 38 66 32 76)

G:=sub<Sym(76)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76), (1,38)(2,37)(3,36)(4,35)(5,34)(6,33)(7,32)(8,31)(9,30)(10,29)(11,28)(12,27)(13,26)(14,25)(15,24)(16,23)(17,22)(18,21)(19,20)(39,57)(40,56)(41,55)(42,54)(43,53)(44,52)(45,51)(46,50)(47,49)(58,76)(59,75)(60,74)(61,73)(62,72)(63,71)(64,70)(65,69)(66,68), (1,39)(2,50,8,40,12,46)(3,61,15,41,23,53)(4,72,22,42,34,60)(5,45,29,43,7,67)(6,56,36,44,18,74)(9,51,19,47,13,57)(10,62,26,48,24,64)(11,73,33,49,35,71)(14,68,16,52,30,54)(17,63,37,55,25,75)(20,58)(21,69,27,59,31,65)(28,70,38,66,32,76)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76), (1,38)(2,37)(3,36)(4,35)(5,34)(6,33)(7,32)(8,31)(9,30)(10,29)(11,28)(12,27)(13,26)(14,25)(15,24)(16,23)(17,22)(18,21)(19,20)(39,57)(40,56)(41,55)(42,54)(43,53)(44,52)(45,51)(46,50)(47,49)(58,76)(59,75)(60,74)(61,73)(62,72)(63,71)(64,70)(65,69)(66,68), (1,39)(2,50,8,40,12,46)(3,61,15,41,23,53)(4,72,22,42,34,60)(5,45,29,43,7,67)(6,56,36,44,18,74)(9,51,19,47,13,57)(10,62,26,48,24,64)(11,73,33,49,35,71)(14,68,16,52,30,54)(17,63,37,55,25,75)(20,58)(21,69,27,59,31,65)(28,70,38,66,32,76) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)], [(1,38),(2,37),(3,36),(4,35),(5,34),(6,33),(7,32),(8,31),(9,30),(10,29),(11,28),(12,27),(13,26),(14,25),(15,24),(16,23),(17,22),(18,21),(19,20),(39,57),(40,56),(41,55),(42,54),(43,53),(44,52),(45,51),(46,50),(47,49),(58,76),(59,75),(60,74),(61,73),(62,72),(63,71),(64,70),(65,69),(66,68)], [(1,39),(2,50,8,40,12,46),(3,61,15,41,23,53),(4,72,22,42,34,60),(5,45,29,43,7,67),(6,56,36,44,18,74),(9,51,19,47,13,57),(10,62,26,48,24,64),(11,73,33,49,35,71),(14,68,16,52,30,54),(17,63,37,55,25,75),(20,58),(21,69,27,59,31,65),(28,70,38,66,32,76)]])

Matrix representation of D38⋊C6 in GL8(𝔽229)

2280000000
0228000000
002079607740100
0012988132191130108
001211201717120121
0010813019113288129
001004077607920
00209221881492081
,
2280000000
2021000000
002079607740100
00120814918822209
0022719100121228228
0021013168301902
0022819991419919
00000001
,
135219000000
094000000
0022800000
00199816119939227
00129189152169150209
0000228000
0022821804120720
00111081292102

G:=sub<GL(8,GF(229))| [228,0,0,0,0,0,0,0,0,228,0,0,0,0,0,0,0,0,20,129,121,108,100,209,0,0,79,88,120,130,40,22,0,0,60,132,17,191,77,188,0,0,77,191,17,132,60,149,0,0,40,130,120,88,79,208,0,0,100,108,121,129,20,1],[228,202,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,20,1,227,210,228,0,0,0,79,208,19,131,19,0,0,0,60,149,100,68,99,0,0,0,77,188,121,30,141,0,0,0,40,22,228,190,99,0,0,0,100,209,228,2,19,1],[135,0,0,0,0,0,0,0,219,94,0,0,0,0,0,0,0,0,228,19,129,0,228,1,0,0,0,98,189,0,21,1,0,0,0,161,152,228,80,108,0,0,0,199,169,0,41,129,0,0,0,39,150,0,207,210,0,0,0,227,209,0,20,2] >;

D38⋊C6 in GAP, Magma, Sage, TeX

D_{38}\rtimes C_6
% in TeX

G:=Group("D38:C6");
// GroupNames label

G:=SmallGroup(456,11);
// by ID

G=gap.SmallGroup(456,11);
# by ID

G:=PCGroup([5,-2,-2,-3,-2,-19,141,10804,1064]);
// Polycyclic

G:=Group<a,b,c|a^38=b^2=c^6=1,b*a*b=a^-1,c*a*c^-1=a^7,c*b*c^-1=a^25*b>;
// generators/relations

Export

Subgroup lattice of D38⋊C6 in TeX
Character table of D38⋊C6 in TeX

׿
×
𝔽