Copied to
clipboard

G = C2×C19⋊C12order 456 = 23·3·19

Direct product of C2 and C19⋊C12

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C2×C19⋊C12, C38⋊C12, Dic193C6, (C2×C38).C6, C192(C2×C12), (C2×Dic19)⋊C3, C38.4(C2×C6), C22.(C19⋊C6), (C2×C19⋊C3)⋊C4, C19⋊C32(C2×C4), C2.2(C2×C19⋊C6), (C22×C19⋊C3).C2, (C2×C19⋊C3).4C22, SmallGroup(456,10)

Series: Derived Chief Lower central Upper central

C1C19 — C2×C19⋊C12
C1C19C38C2×C19⋊C3C19⋊C12 — C2×C19⋊C12
C19 — C2×C19⋊C12
C1C22

Generators and relations for C2×C19⋊C12
 G = < a,b,c | a2=b19=c12=1, ab=ba, ac=ca, cbc-1=b8 >

19C3
19C4
19C4
19C6
19C6
19C6
19C2×C4
19C12
19C12
19C2×C6
19C2×C12

Smallest permutation representation of C2×C19⋊C12
On 152 points
Generators in S152
(1 39)(2 40)(3 41)(4 42)(5 43)(6 44)(7 45)(8 46)(9 47)(10 48)(11 49)(12 50)(13 51)(14 52)(15 53)(16 54)(17 55)(18 56)(19 57)(20 58)(21 59)(22 60)(23 61)(24 62)(25 63)(26 64)(27 65)(28 66)(29 67)(30 68)(31 69)(32 70)(33 71)(34 72)(35 73)(36 74)(37 75)(38 76)(77 115)(78 116)(79 117)(80 118)(81 119)(82 120)(83 121)(84 122)(85 123)(86 124)(87 125)(88 126)(89 127)(90 128)(91 129)(92 130)(93 131)(94 132)(95 133)(96 143)(97 144)(98 145)(99 146)(100 147)(101 148)(102 149)(103 150)(104 151)(105 152)(106 134)(107 135)(108 136)(109 137)(110 138)(111 139)(112 140)(113 141)(114 142)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57)(58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95)(96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114)(115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133)(134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152)
(1 99 20 86)(2 111 31 85 8 107 21 79 12 98 27 94)(3 104 23 84 15 96 22 91 4 97 34 83)(5 109 26 82 10 112 24 77 7 114 29 80)(6 102 37 81 17 101 25 89 18 113 36 88)(9 100 32 78 19 106 28 87 13 110 38 93)(11 105 35 95 14 103 30 92 16 108 33 90)(39 146 58 124)(40 139 69 123 46 135 59 117 50 145 65 132)(41 151 61 122 53 143 60 129 42 144 72 121)(43 137 64 120 48 140 62 115 45 142 67 118)(44 149 75 119 55 148 63 127 56 141 74 126)(47 147 70 116 57 134 66 125 51 138 76 131)(49 152 73 133 52 150 68 130 54 136 71 128)

G:=sub<Sym(152)| (1,39)(2,40)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,63)(26,64)(27,65)(28,66)(29,67)(30,68)(31,69)(32,70)(33,71)(34,72)(35,73)(36,74)(37,75)(38,76)(77,115)(78,116)(79,117)(80,118)(81,119)(82,120)(83,121)(84,122)(85,123)(86,124)(87,125)(88,126)(89,127)(90,128)(91,129)(92,130)(93,131)(94,132)(95,133)(96,143)(97,144)(98,145)(99,146)(100,147)(101,148)(102,149)(103,150)(104,151)(105,152)(106,134)(107,135)(108,136)(109,137)(110,138)(111,139)(112,140)(113,141)(114,142), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95)(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133)(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152), (1,99,20,86)(2,111,31,85,8,107,21,79,12,98,27,94)(3,104,23,84,15,96,22,91,4,97,34,83)(5,109,26,82,10,112,24,77,7,114,29,80)(6,102,37,81,17,101,25,89,18,113,36,88)(9,100,32,78,19,106,28,87,13,110,38,93)(11,105,35,95,14,103,30,92,16,108,33,90)(39,146,58,124)(40,139,69,123,46,135,59,117,50,145,65,132)(41,151,61,122,53,143,60,129,42,144,72,121)(43,137,64,120,48,140,62,115,45,142,67,118)(44,149,75,119,55,148,63,127,56,141,74,126)(47,147,70,116,57,134,66,125,51,138,76,131)(49,152,73,133,52,150,68,130,54,136,71,128)>;

G:=Group( (1,39)(2,40)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,63)(26,64)(27,65)(28,66)(29,67)(30,68)(31,69)(32,70)(33,71)(34,72)(35,73)(36,74)(37,75)(38,76)(77,115)(78,116)(79,117)(80,118)(81,119)(82,120)(83,121)(84,122)(85,123)(86,124)(87,125)(88,126)(89,127)(90,128)(91,129)(92,130)(93,131)(94,132)(95,133)(96,143)(97,144)(98,145)(99,146)(100,147)(101,148)(102,149)(103,150)(104,151)(105,152)(106,134)(107,135)(108,136)(109,137)(110,138)(111,139)(112,140)(113,141)(114,142), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95)(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133)(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152), (1,99,20,86)(2,111,31,85,8,107,21,79,12,98,27,94)(3,104,23,84,15,96,22,91,4,97,34,83)(5,109,26,82,10,112,24,77,7,114,29,80)(6,102,37,81,17,101,25,89,18,113,36,88)(9,100,32,78,19,106,28,87,13,110,38,93)(11,105,35,95,14,103,30,92,16,108,33,90)(39,146,58,124)(40,139,69,123,46,135,59,117,50,145,65,132)(41,151,61,122,53,143,60,129,42,144,72,121)(43,137,64,120,48,140,62,115,45,142,67,118)(44,149,75,119,55,148,63,127,56,141,74,126)(47,147,70,116,57,134,66,125,51,138,76,131)(49,152,73,133,52,150,68,130,54,136,71,128) );

G=PermutationGroup([[(1,39),(2,40),(3,41),(4,42),(5,43),(6,44),(7,45),(8,46),(9,47),(10,48),(11,49),(12,50),(13,51),(14,52),(15,53),(16,54),(17,55),(18,56),(19,57),(20,58),(21,59),(22,60),(23,61),(24,62),(25,63),(26,64),(27,65),(28,66),(29,67),(30,68),(31,69),(32,70),(33,71),(34,72),(35,73),(36,74),(37,75),(38,76),(77,115),(78,116),(79,117),(80,118),(81,119),(82,120),(83,121),(84,122),(85,123),(86,124),(87,125),(88,126),(89,127),(90,128),(91,129),(92,130),(93,131),(94,132),(95,133),(96,143),(97,144),(98,145),(99,146),(100,147),(101,148),(102,149),(103,150),(104,151),(105,152),(106,134),(107,135),(108,136),(109,137),(110,138),(111,139),(112,140),(113,141),(114,142)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57),(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95),(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114),(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133),(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152)], [(1,99,20,86),(2,111,31,85,8,107,21,79,12,98,27,94),(3,104,23,84,15,96,22,91,4,97,34,83),(5,109,26,82,10,112,24,77,7,114,29,80),(6,102,37,81,17,101,25,89,18,113,36,88),(9,100,32,78,19,106,28,87,13,110,38,93),(11,105,35,95,14,103,30,92,16,108,33,90),(39,146,58,124),(40,139,69,123,46,135,59,117,50,145,65,132),(41,151,61,122,53,143,60,129,42,144,72,121),(43,137,64,120,48,140,62,115,45,142,67,118),(44,149,75,119,55,148,63,127,56,141,74,126),(47,147,70,116,57,134,66,125,51,138,76,131),(49,152,73,133,52,150,68,130,54,136,71,128)]])

36 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D6A···6F12A···12H19A19B19C38A···38I
order12223344446···612···1219191938···38
size111119191919191919···1919···196666···6

36 irreducible representations

dim11111111666
type++++-+
imageC1C2C2C3C4C6C6C12C19⋊C6C19⋊C12C2×C19⋊C6
kernelC2×C19⋊C12C19⋊C12C22×C19⋊C3C2×Dic19C2×C19⋊C3Dic19C2×C38C38C22C2C2
# reps12124428363

Matrix representation of C2×C19⋊C12 in GL7(𝔽229)

228000000
022800000
002280000
000228000
000022800
000002280
000000228
,
1000000
010110683106101228
0100000
0010000
0001000
0000100
0000010
,
18000000
02034915912212139
0137151911421289
01654618719844211
090172177018081
05585111336104
0176176166175139176

G:=sub<GL(7,GF(229))| [228,0,0,0,0,0,0,0,228,0,0,0,0,0,0,0,228,0,0,0,0,0,0,0,228,0,0,0,0,0,0,0,228,0,0,0,0,0,0,0,228,0,0,0,0,0,0,0,228],[1,0,0,0,0,0,0,0,101,1,0,0,0,0,0,106,0,1,0,0,0,0,83,0,0,1,0,0,0,106,0,0,0,1,0,0,101,0,0,0,0,1,0,228,0,0,0,0,0],[18,0,0,0,0,0,0,0,203,137,165,90,5,176,0,49,15,46,17,58,176,0,159,191,187,217,51,166,0,12,142,198,70,113,175,0,212,128,44,180,36,139,0,139,9,211,81,104,176] >;

C2×C19⋊C12 in GAP, Magma, Sage, TeX

C_2\times C_{19}\rtimes C_{12}
% in TeX

G:=Group("C2xC19:C12");
// GroupNames label

G:=SmallGroup(456,10);
// by ID

G=gap.SmallGroup(456,10);
# by ID

G:=PCGroup([5,-2,-2,-3,-2,-19,60,10804,1064]);
// Polycyclic

G:=Group<a,b,c|a^2=b^19=c^12=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^8>;
// generators/relations

Export

Subgroup lattice of C2×C19⋊C12 in TeX

׿
×
𝔽