Extensions 1→N→G→Q→1 with N=C78 and Q=S3

Direct product G=N×Q with N=C78 and Q=S3
dρLabelID
S3×C781562S3xC78468,51

Semidirect products G=N:Q with N=C78 and Q=S3
extensionφ:Q→Aut NdρLabelID
C781S3 = C2×C3⋊D39φ: S3/C3C2 ⊆ Aut C78234C78:1S3468,54
C782S3 = C6×D39φ: S3/C3C2 ⊆ Aut C781562C78:2S3468,52
C783S3 = C3⋊S3×C26φ: S3/C3C2 ⊆ Aut C78234C78:3S3468,53

Non-split extensions G=N.Q with N=C78 and Q=S3
extensionφ:Q→Aut NdρLabelID
C78.1S3 = Dic117φ: S3/C3C2 ⊆ Aut C784682-C78.1S3468,5
C78.2S3 = D234φ: S3/C3C2 ⊆ Aut C782342+C78.2S3468,17
C78.3S3 = C3⋊Dic39φ: S3/C3C2 ⊆ Aut C78468C78.3S3468,27
C78.4S3 = C3×Dic39φ: S3/C3C2 ⊆ Aut C781562C78.4S3468,25
C78.5S3 = C13×Dic9φ: S3/C3C2 ⊆ Aut C784682C78.5S3468,3
C78.6S3 = D9×C26φ: S3/C3C2 ⊆ Aut C782342C78.6S3468,16
C78.7S3 = C13×C3⋊Dic3φ: S3/C3C2 ⊆ Aut C78468C78.7S3468,26
C78.8S3 = Dic3×C39central extension (φ=1)1562C78.8S3468,24

׿
×
𝔽