Copied to
clipboard

G = D234order 468 = 22·32·13

Dihedral group

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D234, C2×D117, C26⋊D9, C18⋊D13, C92D26, C3.D78, C132D18, C2341C2, C78.2S3, C6.2D39, C39.2D6, C1172C22, sometimes denoted D468 or Dih234 or Dih468, SmallGroup(468,17)

Series: Derived Chief Lower central Upper central

C1C117 — D234
C1C3C39C117D117 — D234
C117 — D234
C1C2

Generators and relations for D234
 G = < a,b | a234=b2=1, bab=a-1 >

117C2
117C2
117C22
39S3
39S3
9D13
9D13
39D6
13D9
13D9
9D26
3D39
3D39
13D18
3D78

Smallest permutation representation of D234
On 234 points
Generators in S234
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234)
(1 234)(2 233)(3 232)(4 231)(5 230)(6 229)(7 228)(8 227)(9 226)(10 225)(11 224)(12 223)(13 222)(14 221)(15 220)(16 219)(17 218)(18 217)(19 216)(20 215)(21 214)(22 213)(23 212)(24 211)(25 210)(26 209)(27 208)(28 207)(29 206)(30 205)(31 204)(32 203)(33 202)(34 201)(35 200)(36 199)(37 198)(38 197)(39 196)(40 195)(41 194)(42 193)(43 192)(44 191)(45 190)(46 189)(47 188)(48 187)(49 186)(50 185)(51 184)(52 183)(53 182)(54 181)(55 180)(56 179)(57 178)(58 177)(59 176)(60 175)(61 174)(62 173)(63 172)(64 171)(65 170)(66 169)(67 168)(68 167)(69 166)(70 165)(71 164)(72 163)(73 162)(74 161)(75 160)(76 159)(77 158)(78 157)(79 156)(80 155)(81 154)(82 153)(83 152)(84 151)(85 150)(86 149)(87 148)(88 147)(89 146)(90 145)(91 144)(92 143)(93 142)(94 141)(95 140)(96 139)(97 138)(98 137)(99 136)(100 135)(101 134)(102 133)(103 132)(104 131)(105 130)(106 129)(107 128)(108 127)(109 126)(110 125)(111 124)(112 123)(113 122)(114 121)(115 120)(116 119)(117 118)

G:=sub<Sym(234)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234), (1,234)(2,233)(3,232)(4,231)(5,230)(6,229)(7,228)(8,227)(9,226)(10,225)(11,224)(12,223)(13,222)(14,221)(15,220)(16,219)(17,218)(18,217)(19,216)(20,215)(21,214)(22,213)(23,212)(24,211)(25,210)(26,209)(27,208)(28,207)(29,206)(30,205)(31,204)(32,203)(33,202)(34,201)(35,200)(36,199)(37,198)(38,197)(39,196)(40,195)(41,194)(42,193)(43,192)(44,191)(45,190)(46,189)(47,188)(48,187)(49,186)(50,185)(51,184)(52,183)(53,182)(54,181)(55,180)(56,179)(57,178)(58,177)(59,176)(60,175)(61,174)(62,173)(63,172)(64,171)(65,170)(66,169)(67,168)(68,167)(69,166)(70,165)(71,164)(72,163)(73,162)(74,161)(75,160)(76,159)(77,158)(78,157)(79,156)(80,155)(81,154)(82,153)(83,152)(84,151)(85,150)(86,149)(87,148)(88,147)(89,146)(90,145)(91,144)(92,143)(93,142)(94,141)(95,140)(96,139)(97,138)(98,137)(99,136)(100,135)(101,134)(102,133)(103,132)(104,131)(105,130)(106,129)(107,128)(108,127)(109,126)(110,125)(111,124)(112,123)(113,122)(114,121)(115,120)(116,119)(117,118)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234), (1,234)(2,233)(3,232)(4,231)(5,230)(6,229)(7,228)(8,227)(9,226)(10,225)(11,224)(12,223)(13,222)(14,221)(15,220)(16,219)(17,218)(18,217)(19,216)(20,215)(21,214)(22,213)(23,212)(24,211)(25,210)(26,209)(27,208)(28,207)(29,206)(30,205)(31,204)(32,203)(33,202)(34,201)(35,200)(36,199)(37,198)(38,197)(39,196)(40,195)(41,194)(42,193)(43,192)(44,191)(45,190)(46,189)(47,188)(48,187)(49,186)(50,185)(51,184)(52,183)(53,182)(54,181)(55,180)(56,179)(57,178)(58,177)(59,176)(60,175)(61,174)(62,173)(63,172)(64,171)(65,170)(66,169)(67,168)(68,167)(69,166)(70,165)(71,164)(72,163)(73,162)(74,161)(75,160)(76,159)(77,158)(78,157)(79,156)(80,155)(81,154)(82,153)(83,152)(84,151)(85,150)(86,149)(87,148)(88,147)(89,146)(90,145)(91,144)(92,143)(93,142)(94,141)(95,140)(96,139)(97,138)(98,137)(99,136)(100,135)(101,134)(102,133)(103,132)(104,131)(105,130)(106,129)(107,128)(108,127)(109,126)(110,125)(111,124)(112,123)(113,122)(114,121)(115,120)(116,119)(117,118) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234)], [(1,234),(2,233),(3,232),(4,231),(5,230),(6,229),(7,228),(8,227),(9,226),(10,225),(11,224),(12,223),(13,222),(14,221),(15,220),(16,219),(17,218),(18,217),(19,216),(20,215),(21,214),(22,213),(23,212),(24,211),(25,210),(26,209),(27,208),(28,207),(29,206),(30,205),(31,204),(32,203),(33,202),(34,201),(35,200),(36,199),(37,198),(38,197),(39,196),(40,195),(41,194),(42,193),(43,192),(44,191),(45,190),(46,189),(47,188),(48,187),(49,186),(50,185),(51,184),(52,183),(53,182),(54,181),(55,180),(56,179),(57,178),(58,177),(59,176),(60,175),(61,174),(62,173),(63,172),(64,171),(65,170),(66,169),(67,168),(68,167),(69,166),(70,165),(71,164),(72,163),(73,162),(74,161),(75,160),(76,159),(77,158),(78,157),(79,156),(80,155),(81,154),(82,153),(83,152),(84,151),(85,150),(86,149),(87,148),(88,147),(89,146),(90,145),(91,144),(92,143),(93,142),(94,141),(95,140),(96,139),(97,138),(98,137),(99,136),(100,135),(101,134),(102,133),(103,132),(104,131),(105,130),(106,129),(107,128),(108,127),(109,126),(110,125),(111,124),(112,123),(113,122),(114,121),(115,120),(116,119),(117,118)]])

120 conjugacy classes

class 1 2A2B2C 3  6 9A9B9C13A···13F18A18B18C26A···26F39A···39L78A···78L117A···117AJ234A···234AJ
order12223699913···1318181826···2639···3978···78117···117234···234
size11117117222222···22222···22···22···22···22···2

120 irreducible representations

dim1112222222222
type+++++++++++++
imageC1C2C2S3D6D9D13D18D26D39D78D117D234
kernelD234D117C234C78C39C26C18C13C9C6C3C2C1
# reps12111363612123636

Matrix representation of D234 in GL2(𝔽937) generated by

856923
14870
,
879891
1258
G:=sub<GL(2,GF(937))| [856,14,923,870],[879,12,891,58] >;

D234 in GAP, Magma, Sage, TeX

D_{234}
% in TeX

G:=Group("D234");
// GroupNames label

G:=SmallGroup(468,17);
// by ID

G=gap.SmallGroup(468,17);
# by ID

G:=PCGroup([5,-2,-2,-3,-13,-3,2462,1182,2883,7804]);
// Polycyclic

G:=Group<a,b|a^234=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D234 in TeX

׿
×
𝔽