Aliases: (C4×C20)⋊1C6, C42⋊2D5⋊C3, C42⋊C3⋊1D5, C5⋊(C42⋊C6), C42⋊1(C3×D5), C22.2(D5×A4), (C22×D5).2A4, (C5×C42⋊C3)⋊1C2, (C2×C10).2(C2×A4), SmallGroup(480,263)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22 — C2×C10 — C4×C20 — C5×C42⋊C3 — (C4×C20)⋊C6 |
C4×C20 — (C4×C20)⋊C6 |
Generators and relations for (C4×C20)⋊C6
G = < a,b,c | a4=b20=c6=1, ab=ba, cac-1=a-1b5, cbc-1=a-1b14 >
Character table of (C4×C20)⋊C6
class | 1 | 2A | 2B | 3A | 3B | 4A | 4B | 4C | 5A | 5B | 6A | 6B | 10A | 10B | 15A | 15B | 15C | 15D | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | |
size | 1 | 3 | 20 | 16 | 16 | 6 | 6 | 60 | 2 | 2 | 80 | 80 | 6 | 6 | 32 | 32 | 32 | 32 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | ζ32 | ζ3 | 1 | 1 | -1 | 1 | 1 | ζ65 | ζ6 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ4 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ5 | 1 | 1 | -1 | ζ3 | ζ32 | 1 | 1 | -1 | 1 | 1 | ζ6 | ζ65 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ6 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ7 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | -1-√5/2 | -1+√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ8 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | -1+√5/2 | -1-√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ9 | 2 | 2 | 0 | -1-√-3 | -1+√-3 | 2 | 2 | 0 | -1-√5/2 | -1+√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | ζ3ζ54+ζ3ζ5 | ζ32ζ54+ζ32ζ5 | ζ32ζ53+ζ32ζ52 | ζ3ζ53+ζ3ζ52 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | complex lifted from C3×D5 |
ρ10 | 2 | 2 | 0 | -1+√-3 | -1-√-3 | 2 | 2 | 0 | -1-√5/2 | -1+√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | ζ32ζ54+ζ32ζ5 | ζ3ζ54+ζ3ζ5 | ζ3ζ53+ζ3ζ52 | ζ32ζ53+ζ32ζ52 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | complex lifted from C3×D5 |
ρ11 | 2 | 2 | 0 | -1-√-3 | -1+√-3 | 2 | 2 | 0 | -1+√5/2 | -1-√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | ζ3ζ53+ζ3ζ52 | ζ32ζ53+ζ32ζ52 | ζ32ζ54+ζ32ζ5 | ζ3ζ54+ζ3ζ5 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | complex lifted from C3×D5 |
ρ12 | 2 | 2 | 0 | -1+√-3 | -1-√-3 | 2 | 2 | 0 | -1+√5/2 | -1-√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | ζ32ζ53+ζ32ζ52 | ζ3ζ53+ζ3ζ52 | ζ3ζ54+ζ3ζ5 | ζ32ζ54+ζ32ζ5 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | complex lifted from C3×D5 |
ρ13 | 3 | 3 | 3 | 0 | 0 | -1 | -1 | -1 | 3 | 3 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from A4 |
ρ14 | 3 | 3 | -3 | 0 | 0 | -1 | -1 | 1 | 3 | 3 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from C2×A4 |
ρ15 | 6 | 6 | 0 | 0 | 0 | -2 | -2 | 0 | -3+3√5/2 | -3-3√5/2 | 0 | 0 | -3-3√5/2 | -3+3√5/2 | 0 | 0 | 0 | 0 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | orthogonal lifted from D5×A4 |
ρ16 | 6 | 6 | 0 | 0 | 0 | -2 | -2 | 0 | -3-3√5/2 | -3+3√5/2 | 0 | 0 | -3+3√5/2 | -3-3√5/2 | 0 | 0 | 0 | 0 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | orthogonal lifted from D5×A4 |
ρ17 | 6 | -2 | 0 | 0 | 0 | -2i | 2i | 0 | 6 | 6 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 2i | -2i | -2i | 2i | 2i | -2i | -2i | 2i | complex lifted from C42⋊C6 |
ρ18 | 6 | -2 | 0 | 0 | 0 | 2i | -2i | 0 | 6 | 6 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -2i | 2i | 2i | -2i | -2i | 2i | 2i | -2i | complex lifted from C42⋊C6 |
ρ19 | 6 | -2 | 0 | 0 | 0 | -2i | 2i | 0 | -3-3√5/2 | -3+3√5/2 | 0 | 0 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | 0 | 2ζ4ζ54-ζ54+ζ5 | 2ζ43ζ5+ζ54-ζ5 | 2ζ43ζ54-ζ54+ζ5 | 2ζ4ζ5+ζ54-ζ5 | 2ζ4ζ52+ζ53-ζ52 | 2ζ43ζ53-ζ53+ζ52 | 2ζ43ζ52+ζ53-ζ52 | 2ζ4ζ53-ζ53+ζ52 | complex faithful |
ρ20 | 6 | -2 | 0 | 0 | 0 | -2i | 2i | 0 | -3+3√5/2 | -3-3√5/2 | 0 | 0 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | 0 | 2ζ4ζ52+ζ53-ζ52 | 2ζ43ζ53-ζ53+ζ52 | 2ζ43ζ52+ζ53-ζ52 | 2ζ4ζ53-ζ53+ζ52 | 2ζ4ζ5+ζ54-ζ5 | 2ζ43ζ54-ζ54+ζ5 | 2ζ43ζ5+ζ54-ζ5 | 2ζ4ζ54-ζ54+ζ5 | complex faithful |
ρ21 | 6 | -2 | 0 | 0 | 0 | 2i | -2i | 0 | -3+3√5/2 | -3-3√5/2 | 0 | 0 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | 0 | 2ζ43ζ53-ζ53+ζ52 | 2ζ4ζ52+ζ53-ζ52 | 2ζ4ζ53-ζ53+ζ52 | 2ζ43ζ52+ζ53-ζ52 | 2ζ43ζ54-ζ54+ζ5 | 2ζ4ζ5+ζ54-ζ5 | 2ζ4ζ54-ζ54+ζ5 | 2ζ43ζ5+ζ54-ζ5 | complex faithful |
ρ22 | 6 | -2 | 0 | 0 | 0 | -2i | 2i | 0 | -3-3√5/2 | -3+3√5/2 | 0 | 0 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | 0 | 2ζ4ζ5+ζ54-ζ5 | 2ζ43ζ54-ζ54+ζ5 | 2ζ43ζ5+ζ54-ζ5 | 2ζ4ζ54-ζ54+ζ5 | 2ζ4ζ53-ζ53+ζ52 | 2ζ43ζ52+ζ53-ζ52 | 2ζ43ζ53-ζ53+ζ52 | 2ζ4ζ52+ζ53-ζ52 | complex faithful |
ρ23 | 6 | -2 | 0 | 0 | 0 | 2i | -2i | 0 | -3-3√5/2 | -3+3√5/2 | 0 | 0 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | 0 | 2ζ43ζ5+ζ54-ζ5 | 2ζ4ζ54-ζ54+ζ5 | 2ζ4ζ5+ζ54-ζ5 | 2ζ43ζ54-ζ54+ζ5 | 2ζ43ζ53-ζ53+ζ52 | 2ζ4ζ52+ζ53-ζ52 | 2ζ4ζ53-ζ53+ζ52 | 2ζ43ζ52+ζ53-ζ52 | complex faithful |
ρ24 | 6 | -2 | 0 | 0 | 0 | 2i | -2i | 0 | -3-3√5/2 | -3+3√5/2 | 0 | 0 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | 0 | 2ζ43ζ54-ζ54+ζ5 | 2ζ4ζ5+ζ54-ζ5 | 2ζ4ζ54-ζ54+ζ5 | 2ζ43ζ5+ζ54-ζ5 | 2ζ43ζ52+ζ53-ζ52 | 2ζ4ζ53-ζ53+ζ52 | 2ζ4ζ52+ζ53-ζ52 | 2ζ43ζ53-ζ53+ζ52 | complex faithful |
ρ25 | 6 | -2 | 0 | 0 | 0 | -2i | 2i | 0 | -3+3√5/2 | -3-3√5/2 | 0 | 0 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | 0 | 2ζ4ζ53-ζ53+ζ52 | 2ζ43ζ52+ζ53-ζ52 | 2ζ43ζ53-ζ53+ζ52 | 2ζ4ζ52+ζ53-ζ52 | 2ζ4ζ54-ζ54+ζ5 | 2ζ43ζ5+ζ54-ζ5 | 2ζ43ζ54-ζ54+ζ5 | 2ζ4ζ5+ζ54-ζ5 | complex faithful |
ρ26 | 6 | -2 | 0 | 0 | 0 | 2i | -2i | 0 | -3+3√5/2 | -3-3√5/2 | 0 | 0 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | 0 | 2ζ43ζ52+ζ53-ζ52 | 2ζ4ζ53-ζ53+ζ52 | 2ζ4ζ52+ζ53-ζ52 | 2ζ43ζ53-ζ53+ζ52 | 2ζ43ζ5+ζ54-ζ5 | 2ζ4ζ54-ζ54+ζ5 | 2ζ4ζ5+ζ54-ζ5 | 2ζ43ζ54-ζ54+ζ5 | complex faithful |
(1 77 30 44)(2 78 31 45)(3 79 32 46)(4 80 33 47)(5 61 34 48)(6 62 35 49)(7 63 36 50)(8 64 37 51)(9 65 38 52)(10 66 39 53)(11 67 40 54)(12 68 21 55)(13 69 22 56)(14 70 23 57)(15 71 24 58)(16 72 25 59)(17 73 26 60)(18 74 27 41)(19 75 28 42)(20 76 29 43)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(2 53 73 39 55 58)(3 28 22 19 32 38)(4 64 52 37 70 79)(5 17)(6 49 77 35 59 54)(7 24 26 15 36 34)(8 80 56 33 74 75)(9 13)(10 45 61 31 43 50)(11 40 30)(12 76 60 29 78 71)(14 41 65 27 47 46)(16 72 44 25 62 67)(18 57 69 23 51 42)(20 68 48 21 66 63)
G:=sub<Sym(80)| (1,77,30,44)(2,78,31,45)(3,79,32,46)(4,80,33,47)(5,61,34,48)(6,62,35,49)(7,63,36,50)(8,64,37,51)(9,65,38,52)(10,66,39,53)(11,67,40,54)(12,68,21,55)(13,69,22,56)(14,70,23,57)(15,71,24,58)(16,72,25,59)(17,73,26,60)(18,74,27,41)(19,75,28,42)(20,76,29,43), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,53,73,39,55,58)(3,28,22,19,32,38)(4,64,52,37,70,79)(5,17)(6,49,77,35,59,54)(7,24,26,15,36,34)(8,80,56,33,74,75)(9,13)(10,45,61,31,43,50)(11,40,30)(12,76,60,29,78,71)(14,41,65,27,47,46)(16,72,44,25,62,67)(18,57,69,23,51,42)(20,68,48,21,66,63)>;
G:=Group( (1,77,30,44)(2,78,31,45)(3,79,32,46)(4,80,33,47)(5,61,34,48)(6,62,35,49)(7,63,36,50)(8,64,37,51)(9,65,38,52)(10,66,39,53)(11,67,40,54)(12,68,21,55)(13,69,22,56)(14,70,23,57)(15,71,24,58)(16,72,25,59)(17,73,26,60)(18,74,27,41)(19,75,28,42)(20,76,29,43), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,53,73,39,55,58)(3,28,22,19,32,38)(4,64,52,37,70,79)(5,17)(6,49,77,35,59,54)(7,24,26,15,36,34)(8,80,56,33,74,75)(9,13)(10,45,61,31,43,50)(11,40,30)(12,76,60,29,78,71)(14,41,65,27,47,46)(16,72,44,25,62,67)(18,57,69,23,51,42)(20,68,48,21,66,63) );
G=PermutationGroup([[(1,77,30,44),(2,78,31,45),(3,79,32,46),(4,80,33,47),(5,61,34,48),(6,62,35,49),(7,63,36,50),(8,64,37,51),(9,65,38,52),(10,66,39,53),(11,67,40,54),(12,68,21,55),(13,69,22,56),(14,70,23,57),(15,71,24,58),(16,72,25,59),(17,73,26,60),(18,74,27,41),(19,75,28,42),(20,76,29,43)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(2,53,73,39,55,58),(3,28,22,19,32,38),(4,64,52,37,70,79),(5,17),(6,49,77,35,59,54),(7,24,26,15,36,34),(8,80,56,33,74,75),(9,13),(10,45,61,31,43,50),(11,40,30),(12,76,60,29,78,71),(14,41,65,27,47,46),(16,72,44,25,62,67),(18,57,69,23,51,42),(20,68,48,21,66,63)]])
Matrix representation of (C4×C20)⋊C6 ►in GL8(𝔽61)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 31 | 5 | 35 | 9 | 11 | 38 |
0 | 0 | 32 | 58 | 26 | 52 | 50 | 38 |
0 | 0 | 29 | 53 | 24 | 9 | 11 | 23 |
0 | 0 | 0 | 0 | 0 | 50 | 0 | 0 |
0 | 0 | 25 | 49 | 35 | 9 | 0 | 9 |
0 | 0 | 12 | 12 | 0 | 0 | 0 | 59 |
0 | 60 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 17 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 50 | 50 | 0 | 0 | 60 | 0 |
0 | 0 | 11 | 33 | 22 | 46 | 1 | 0 |
0 | 0 | 0 | 12 | 12 | 39 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 50 |
13 | 38 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 48 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 60 | 60 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 23 | 49 | 19 | 11 | 27 | 0 |
0 | 0 | 30 | 6 | 37 | 52 | 50 | 23 |
0 | 0 | 0 | 45 | 45 | 11 | 0 | 0 |
G:=sub<GL(8,GF(61))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,31,32,29,0,25,12,0,0,5,58,53,0,49,12,0,0,35,26,24,0,35,0,0,0,9,52,9,50,9,0,0,0,11,50,11,0,0,0,0,0,38,38,23,0,9,59],[0,1,0,0,0,0,0,0,60,17,0,0,0,0,0,0,0,0,0,50,11,0,0,0,0,0,0,50,33,12,0,0,0,0,0,0,22,12,1,0,0,0,0,0,46,39,0,0,0,0,1,60,1,0,0,0,0,0,0,0,0,0,0,50],[13,0,0,0,0,0,0,0,38,48,0,0,0,0,0,0,0,0,1,60,0,23,30,0,0,0,0,60,1,49,6,45,0,0,0,60,0,19,37,45,0,0,0,0,0,11,52,11,0,0,0,0,0,27,50,0,0,0,0,0,0,0,23,0] >;
(C4×C20)⋊C6 in GAP, Magma, Sage, TeX
(C_4\times C_{20})\rtimes C_6
% in TeX
G:=Group("(C4xC20):C6");
// GroupNames label
G:=SmallGroup(480,263);
// by ID
G=gap.SmallGroup(480,263);
# by ID
G:=PCGroup([7,-2,-3,-2,2,-5,-2,2,7688,198,856,7059,1774,304,3364,5052,8833]);
// Polycyclic
G:=Group<a,b,c|a^4=b^20=c^6=1,a*b=b*a,c*a*c^-1=a^-1*b^5,c*b*c^-1=a^-1*b^14>;
// generators/relations
Export
Subgroup lattice of (C4×C20)⋊C6 in TeX
Character table of (C4×C20)⋊C6 in TeX