Copied to
clipboard

G = C4×SL2(𝔽5)  order 480 = 25·3·5

Direct product of C4 and SL2(𝔽5)

direct product, non-abelian, not soluble

Aliases: C4×SL2(𝔽5), C2.3(C4×A5), (C2×C4).1A5, C2.(C4.A5), C22.2(C2×A5), C2.(C2×SL2(𝔽5)), (C2×SL2(𝔽5)).3C2, SmallGroup(480,222)

Series: ChiefDerived Lower central Upper central

C1C2C4C2×C4 — C4×SL2(𝔽5)
SL2(𝔽5) — C4×SL2(𝔽5)
SL2(𝔽5) — C4×SL2(𝔽5)
C1C2×C4

10C3
6C5
15C4
15C4
30C4
10C6
10C6
10C6
6C10
6C10
6C10
5Q8
15Q8
15C2×C4
15C2×C4
10Dic3
10Dic3
10Dic3
10Dic3
10C2×C6
10C12
10C12
6Dic5
6C20
6C2×C10
6Dic5
6Dic5
6C20
6Dic5
5C2×Q8
15C42
15C4⋊C4
5SL2(𝔽3)
10C2×C12
10C2×Dic3
10C2×Dic3
6C2×Dic5
6C2×C20
6C2×Dic5
5C4×Q8
5C2×SL2(𝔽3)
10C4×Dic3
6C4×Dic5
5C4×SL2(𝔽3)

Smallest permutation representation of C4×SL2(𝔽5)
On 96 points
Generators in S96
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 26 81 52 66 2 31 86 37 71 3 36 91 42 76 4 21 96 47 61)(5 38 19 73 95 6 43 24 58 80 7 48 29 63 85 8 53 34 68 90)(9 88 72 20 45 10 93 57 25 50 11 78 62 30 55 12 83 67 35 40)(13 74 46 77 28 14 59 51 82 33 15 64 56 87 18 16 69 41 92 23)(17 22 27 32)(39 44 49 54)(60 65 70 75)(79 84 89 94)

G:=sub<Sym(96)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,26,81,52,66,2,31,86,37,71,3,36,91,42,76,4,21,96,47,61)(5,38,19,73,95,6,43,24,58,80,7,48,29,63,85,8,53,34,68,90)(9,88,72,20,45,10,93,57,25,50,11,78,62,30,55,12,83,67,35,40)(13,74,46,77,28,14,59,51,82,33,15,64,56,87,18,16,69,41,92,23)(17,22,27,32)(39,44,49,54)(60,65,70,75)(79,84,89,94)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,26,81,52,66,2,31,86,37,71,3,36,91,42,76,4,21,96,47,61)(5,38,19,73,95,6,43,24,58,80,7,48,29,63,85,8,53,34,68,90)(9,88,72,20,45,10,93,57,25,50,11,78,62,30,55,12,83,67,35,40)(13,74,46,77,28,14,59,51,82,33,15,64,56,87,18,16,69,41,92,23)(17,22,27,32)(39,44,49,54)(60,65,70,75)(79,84,89,94) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,26,81,52,66,2,31,86,37,71,3,36,91,42,76,4,21,96,47,61),(5,38,19,73,95,6,43,24,58,80,7,48,29,63,85,8,53,34,68,90),(9,88,72,20,45,10,93,57,25,50,11,78,62,30,55,12,83,67,35,40),(13,74,46,77,28,14,59,51,82,33,15,64,56,87,18,16,69,41,92,23),(17,22,27,32),(39,44,49,54),(60,65,70,75),(79,84,89,94)]])

36 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F4G4H5A5B6A6B6C10A···10F12A12B12C12D20A···20H
order12223444444445566610···101212121220···20
size111120111130303030121220202012···122020202012···12

36 irreducible representations

dim111223334444455566
type++-+++-+++-
imageC1C2C4SL2(𝔽5)C4.A5A5C2×A5C4×A5A5SL2(𝔽5)C2×A5C4×A5C4.A5A5C2×A5C4×A5SL2(𝔽5)C4.A5
kernelC4×SL2(𝔽5)C2×SL2(𝔽5)SL2(𝔽5)C4C2C2×C4C22C2C2×C4C4C22C2C2C2×C4C22C2C4C2
# reps112442241212211222

Matrix representation of C4×SL2(𝔽5) in GL3(𝔽61) generated by

1100
03836
01040
,
1100
03621
04042
G:=sub<GL(3,GF(61))| [11,0,0,0,38,10,0,36,40],[11,0,0,0,36,40,0,21,42] >;

C4×SL2(𝔽5) in GAP, Magma, Sage, TeX

C_4\times {\rm SL}_2({\mathbb F}_5)
% in TeX

G:=Group("C4xSL(2,5)");
// GroupNames label

G:=SmallGroup(480,222);
// by ID

G=gap.SmallGroup(480,222);
# by ID

Export

Subgroup lattice of C4×SL2(𝔽5) in TeX

׿
×
𝔽