direct product, non-abelian, not soluble
Aliases: C4×SL2(𝔽5), C2.3(C4×A5), (C2×C4).1A5, C2.(C4.A5), C22.2(C2×A5), C2.(C2×SL2(𝔽5)), (C2×SL2(𝔽5)).3C2, SmallGroup(480,222)
Series: Chief►Derived ►Lower central ►Upper central
SL2(𝔽5) — C4×SL2(𝔽5) |
SL2(𝔽5) — C4×SL2(𝔽5) |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 26 81 52 66 2 31 86 37 71 3 36 91 42 76 4 21 96 47 61)(5 38 19 73 95 6 43 24 58 80 7 48 29 63 85 8 53 34 68 90)(9 88 72 20 45 10 93 57 25 50 11 78 62 30 55 12 83 67 35 40)(13 74 46 77 28 14 59 51 82 33 15 64 56 87 18 16 69 41 92 23)(17 22 27 32)(39 44 49 54)(60 65 70 75)(79 84 89 94)
G:=sub<Sym(96)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,26,81,52,66,2,31,86,37,71,3,36,91,42,76,4,21,96,47,61)(5,38,19,73,95,6,43,24,58,80,7,48,29,63,85,8,53,34,68,90)(9,88,72,20,45,10,93,57,25,50,11,78,62,30,55,12,83,67,35,40)(13,74,46,77,28,14,59,51,82,33,15,64,56,87,18,16,69,41,92,23)(17,22,27,32)(39,44,49,54)(60,65,70,75)(79,84,89,94)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,26,81,52,66,2,31,86,37,71,3,36,91,42,76,4,21,96,47,61)(5,38,19,73,95,6,43,24,58,80,7,48,29,63,85,8,53,34,68,90)(9,88,72,20,45,10,93,57,25,50,11,78,62,30,55,12,83,67,35,40)(13,74,46,77,28,14,59,51,82,33,15,64,56,87,18,16,69,41,92,23)(17,22,27,32)(39,44,49,54)(60,65,70,75)(79,84,89,94) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,26,81,52,66,2,31,86,37,71,3,36,91,42,76,4,21,96,47,61),(5,38,19,73,95,6,43,24,58,80,7,48,29,63,85,8,53,34,68,90),(9,88,72,20,45,10,93,57,25,50,11,78,62,30,55,12,83,67,35,40),(13,74,46,77,28,14,59,51,82,33,15,64,56,87,18,16,69,41,92,23),(17,22,27,32),(39,44,49,54),(60,65,70,75),(79,84,89,94)]])
36 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 5A | 5B | 6A | 6B | 6C | 10A | ··· | 10F | 12A | 12B | 12C | 12D | 20A | ··· | 20H |
order | 1 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 6 | 6 | 6 | 10 | ··· | 10 | 12 | 12 | 12 | 12 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 20 | 1 | 1 | 1 | 1 | 30 | 30 | 30 | 30 | 12 | 12 | 20 | 20 | 20 | 12 | ··· | 12 | 20 | 20 | 20 | 20 | 12 | ··· | 12 |
36 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 6 | 6 |
type | + | + | - | + | + | + | - | + | + | + | - | |||||||
image | C1 | C2 | C4 | SL2(𝔽5) | C4.A5 | A5 | C2×A5 | C4×A5 | A5 | SL2(𝔽5) | C2×A5 | C4×A5 | C4.A5 | A5 | C2×A5 | C4×A5 | SL2(𝔽5) | C4.A5 |
kernel | C4×SL2(𝔽5) | C2×SL2(𝔽5) | SL2(𝔽5) | C4 | C2 | C2×C4 | C22 | C2 | C2×C4 | C4 | C22 | C2 | C2 | C2×C4 | C22 | C2 | C4 | C2 |
# reps | 1 | 1 | 2 | 4 | 4 | 2 | 2 | 4 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 |
Matrix representation of C4×SL2(𝔽5) ►in GL3(𝔽61) generated by
11 | 0 | 0 |
0 | 38 | 36 |
0 | 10 | 40 |
11 | 0 | 0 |
0 | 36 | 21 |
0 | 40 | 42 |
G:=sub<GL(3,GF(61))| [11,0,0,0,38,10,0,36,40],[11,0,0,0,36,40,0,21,42] >;
C4×SL2(𝔽5) in GAP, Magma, Sage, TeX
C_4\times {\rm SL}_2({\mathbb F}_5)
% in TeX
G:=Group("C4xSL(2,5)");
// GroupNames label
G:=SmallGroup(480,222);
// by ID
G=gap.SmallGroup(480,222);
# by ID
Export