direct product, non-abelian, not soluble
Aliases: C2×SL2(𝔽5), C22.A5, C2.3(C2×A5), SmallGroup(240,94)
Series: Chief►Derived ►Lower central ►Upper central
SL2(𝔽5) — C2×SL2(𝔽5) |
SL2(𝔽5) — C2×SL2(𝔽5) |
Character table of C2×SL2(𝔽5)
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 5A | 5B | 6A | 6B | 6C | 10A | 10B | 10C | 10D | 10E | 10F | |
size | 1 | 1 | 1 | 1 | 20 | 30 | 30 | 12 | 12 | 20 | 20 | 20 | 12 | 12 | 12 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 2 | -2 | -2 | -1 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1 | 1 | -1 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | symplectic lifted from SL2(𝔽5), Schur index 2 |
ρ4 | 2 | -2 | -2 | 2 | -1 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1 | -1 | 1 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | symplectic lifted from SL2(𝔽5), Schur index 2 |
ρ5 | 2 | -2 | -2 | 2 | -1 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1 | -1 | 1 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | symplectic lifted from SL2(𝔽5), Schur index 2 |
ρ6 | 2 | 2 | -2 | -2 | -1 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1 | 1 | -1 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | symplectic lifted from SL2(𝔽5), Schur index 2 |
ρ7 | 3 | -3 | 3 | -3 | 0 | -1 | 1 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | orthogonal lifted from C2×A5 |
ρ8 | 3 | -3 | 3 | -3 | 0 | -1 | 1 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | orthogonal lifted from C2×A5 |
ρ9 | 3 | 3 | 3 | 3 | 0 | -1 | -1 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | orthogonal lifted from A5 |
ρ10 | 3 | 3 | 3 | 3 | 0 | -1 | -1 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | orthogonal lifted from A5 |
ρ11 | 4 | -4 | 4 | -4 | 1 | 0 | 0 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | orthogonal lifted from C2×A5 |
ρ12 | 4 | 4 | 4 | 4 | 1 | 0 | 0 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from A5 |
ρ13 | 4 | 4 | -4 | -4 | 1 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | symplectic lifted from SL2(𝔽5), Schur index 2 |
ρ14 | 4 | -4 | -4 | 4 | 1 | 0 | 0 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | symplectic lifted from SL2(𝔽5), Schur index 2 |
ρ15 | 5 | -5 | 5 | -5 | -1 | 1 | -1 | 0 | 0 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A5 |
ρ16 | 5 | 5 | 5 | 5 | -1 | 1 | 1 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A5 |
ρ17 | 6 | 6 | -6 | -6 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | -1 | -1 | symplectic lifted from SL2(𝔽5), Schur index 2 |
ρ18 | 6 | -6 | -6 | 6 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | -1 | -1 | symplectic lifted from SL2(𝔽5), Schur index 2 |
(1 2)(3 4)(5 6)(7 8)(9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48)
(1 26 40 47 25 3 12 30 37 11)(2 21 45 42 20 4 17 35 32 16)(5 29 22 19 38 7 39 18 15 48)(6 34 27 24 33 8 44 13 10 43)(9 23)(14 28)(31 41)(36 46)
G:=sub<Sym(48)| (1,2)(3,4)(5,6)(7,8)(9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48), (1,26,40,47,25,3,12,30,37,11)(2,21,45,42,20,4,17,35,32,16)(5,29,22,19,38,7,39,18,15,48)(6,34,27,24,33,8,44,13,10,43)(9,23)(14,28)(31,41)(36,46)>;
G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48), (1,26,40,47,25,3,12,30,37,11)(2,21,45,42,20,4,17,35,32,16)(5,29,22,19,38,7,39,18,15,48)(6,34,27,24,33,8,44,13,10,43)(9,23)(14,28)(31,41)(36,46) );
G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48)], [(1,26,40,47,25,3,12,30,37,11),(2,21,45,42,20,4,17,35,32,16),(5,29,22,19,38,7,39,18,15,48),(6,34,27,24,33,8,44,13,10,43),(9,23),(14,28),(31,41),(36,46)]])
C2×SL2(𝔽5) is a maximal subgroup of
C22.2S5 C22.S5 D4.A5
Matrix representation of C2×SL2(𝔽5) ►in GL3(𝔽61) generated by
60 | 0 | 0 |
0 | 7 | 22 |
0 | 53 | 36 |
60 | 0 | 0 |
0 | 20 | 30 |
0 | 18 | 24 |
G:=sub<GL(3,GF(61))| [60,0,0,0,7,53,0,22,36],[60,0,0,0,20,18,0,30,24] >;
C2×SL2(𝔽5) in GAP, Magma, Sage, TeX
C_2\times {\rm SL}_2({\mathbb F}_5)
% in TeX
G:=Group("C2xSL(2,5)");
// GroupNames label
G:=SmallGroup(240,94);
// by ID
G=gap.SmallGroup(240,94);
# by ID
Export
Subgroup lattice of C2×SL2(𝔽5) in TeX
Character table of C2×SL2(𝔽5) in TeX