Extensions 1→N→G→Q→1 with N=C5×A4 and Q=C2×C4

Direct product G=N×Q with N=C5×A4 and Q=C2×C4
dρLabelID
A4×C2×C20120A4xC2xC20480,1126

Semidirect products G=N:Q with N=C5×A4 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
(C5×A4)⋊(C2×C4) = F5×S4φ: C2×C4/C1C2×C4 ⊆ Out C5×A42012+(C5xA4):(C2xC4)480,1189
(C5×A4)⋊2(C2×C4) = C2×A4⋊F5φ: C2×C4/C2C4 ⊆ Out C5×A43012+(C5xA4):2(C2xC4)480,1191
(C5×A4)⋊3(C2×C4) = C2×A4×F5φ: C2×C4/C2C4 ⊆ Out C5×A43012+(C5xA4):3(C2xC4)480,1192
(C5×A4)⋊4(C2×C4) = Dic5×S4φ: C2×C4/C2C22 ⊆ Out C5×A4606-(C5xA4):4(C2xC4)480,976
(C5×A4)⋊5(C2×C4) = Dic52S4φ: C2×C4/C2C22 ⊆ Out C5×A4606(C5xA4):5(C2xC4)480,977
(C5×A4)⋊6(C2×C4) = D5×A4⋊C4φ: C2×C4/C2C22 ⊆ Out C5×A4606(C5xA4):6(C2xC4)480,979
(C5×A4)⋊7(C2×C4) = C4×C5⋊S4φ: C2×C4/C4C2 ⊆ Out C5×A4606(C5xA4):7(C2xC4)480,1025
(C5×A4)⋊8(C2×C4) = C4×D5×A4φ: C2×C4/C4C2 ⊆ Out C5×A4606(C5xA4):8(C2xC4)480,1036
(C5×A4)⋊9(C2×C4) = C20×S4φ: C2×C4/C4C2 ⊆ Out C5×A4603(C5xA4):9(C2xC4)480,1014
(C5×A4)⋊10(C2×C4) = C2×A4⋊Dic5φ: C2×C4/C22C2 ⊆ Out C5×A4120(C5xA4):10(C2xC4)480,1033
(C5×A4)⋊11(C2×C4) = C2×A4×Dic5φ: C2×C4/C22C2 ⊆ Out C5×A4120(C5xA4):11(C2xC4)480,1044
(C5×A4)⋊12(C2×C4) = C10×A4⋊C4φ: C2×C4/C22C2 ⊆ Out C5×A4120(C5xA4):12(C2xC4)480,1022


׿
×
𝔽