Copied to
clipboard

G = F5xS4order 480 = 25·3·5

Direct product of F5 and S4

direct product, non-abelian, soluble, monomial

Aliases: F5xS4, C5:S4:C4, C5:(C4xS4), (C5xS4):C4, A4:F5:C2, (A4xF5):C2, (D5xS4).C2, C22:(S3xF5), A4:1(C2xF5), (C22xF5):S3, D5.1(C2xS4), (C22xD5).D6, (D5xA4).C22, (C5xA4):(C2xC4), (C2xC10):(C4xS3), Hol(C2xC10), SmallGroup(480,1189)

Series: Derived Chief Lower central Upper central

C1C22C5xA4 — F5xS4
C1C22C2xC10C5xA4D5xA4A4xF5 — F5xS4
C5xA4 — F5xS4
C1

Generators and relations for F5xS4
 G = < a,b,c,d,e,f | a5=b4=c2=d2=e3=f2=1, bab-1=a3, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, ece-1=fcf=cd=dc, ede-1=c, df=fd, fef=e-1 >

Subgroups: 912 in 112 conjugacy classes, 18 normal (all characteristic)
C1, C2, C3, C4, C22, C22, C5, S3, C6, C2xC4, D4, C23, D5, D5, C10, Dic3, C12, A4, D6, C15, C42, C22:C4, C4:C4, C22xC4, C2xD4, Dic5, C20, F5, F5, D10, C2xC10, C2xC10, C4xS3, S4, S4, C2xA4, C5xS3, C3xD5, D15, C4xD4, C4xD5, D20, C5:D4, C5xD4, C2xF5, C22xD5, C22xD5, A4:C4, C4xA4, C2xS4, C3xF5, C3:F5, S3xD5, C5xA4, C4xF5, C4:F5, C22:F5, D4xD5, C22xF5, C22xF5, C4xS4, S3xF5, C5xS4, C5:S4, D5xA4, D4xF5, A4:F5, A4xF5, D5xS4, F5xS4
Quotients: C1, C2, C4, C22, S3, C2xC4, D6, F5, C4xS3, S4, C2xF5, C2xS4, C4xS4, S3xF5, F5xS4

Character table of F5xS4

 class 12A2B2C2D2E34A4B4C4D4E4F4G4H4I4J5610A10B12A12B1520
 size 13561530855615153030303030440122440403224
ρ11111111111111111111111111    trivial
ρ21111111-1-11-1-1-1-1-1-111111-1-111    linear of order 2
ρ3111-11-11-1-1-1-1-11111-1111-1-1-11-1    linear of order 2
ρ4111-11-1111-111-1-1-1-1-1111-1111-1    linear of order 2
ρ511-11-1-11i-i1-iii-i-ii-11-111i-i11    linear of order 4
ρ611-11-1-11-ii1i-i-iii-i-11-111-ii11    linear of order 4
ρ711-1-1-111-ii-1i-ii-i-ii11-11-1-ii1-1    linear of order 4
ρ811-1-1-111i-i-1-ii-iii-i11-11-1i-i1-1    linear of order 4
ρ9222020-1-2-20-2-2000002-12011-10    orthogonal lifted from D6
ρ10222020-122022000002-120-1-1-10    orthogonal lifted from S3
ρ1122-20-20-1-2i2i02i-2i000002120i-i-10    complex lifted from C4xS3
ρ1222-20-20-12i-2i0-2i2i000002120-ii-10    complex lifted from C4xS3
ρ133-131-110-3-3-1111-11-1-130-11000-1    orthogonal lifted from C2xS4
ρ143-131-11033-1-1-1-11-11-130-11000-1    orthogonal lifted from S4
ρ153-13-1-1-10-3-3111-11-11130-1-10001    orthogonal lifted from C2xS4
ρ163-13-1-1-10331-1-11-11-1130-1-10001    orthogonal lifted from S4
ρ173-1-311-103i-3i-1i-i-i-iii130-11000-1    complex lifted from C4xS4
ρ183-1-311-10-3i3i-1-iiii-i-i130-11000-1    complex lifted from C4xS4
ρ193-1-3-11103i-3i1i-iii-i-i-130-1-10001    complex lifted from C4xS4
ρ203-1-3-1110-3i3i1-ii-i-iii-130-1-10001    complex lifted from C4xS4
ρ21440-400400-40000000-10-1100-11    orthogonal lifted from C2xF5
ρ2244040040040000000-10-1-100-1-1    orthogonal lifted from F5
ρ23880000-40000000000-20-200010    orthogonal lifted from S3xF5
ρ2412-40400000-40000000-301-10001    orthogonal faithful
ρ2512-40-40000040000000-3011000-1    orthogonal faithful

Permutation representations of F5xS4
On 20 points - transitive group 20T121
Generators in S20
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
(2 3 5 4)(7 8 10 9)(12 13 15 14)(16 19 20 17)
(1 6)(2 7)(3 8)(4 9)(5 10)(11 18)(12 19)(13 20)(14 16)(15 17)
(1 18)(2 19)(3 20)(4 16)(5 17)(6 11)(7 12)(8 13)(9 14)(10 15)
(6 18 11)(7 19 12)(8 20 13)(9 16 14)(10 17 15)
(6 11)(7 12)(8 13)(9 14)(10 15)

G:=sub<Sym(20)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (2,3,5,4)(7,8,10,9)(12,13,15,14)(16,19,20,17), (1,6)(2,7)(3,8)(4,9)(5,10)(11,18)(12,19)(13,20)(14,16)(15,17), (1,18)(2,19)(3,20)(4,16)(5,17)(6,11)(7,12)(8,13)(9,14)(10,15), (6,18,11)(7,19,12)(8,20,13)(9,16,14)(10,17,15), (6,11)(7,12)(8,13)(9,14)(10,15)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (2,3,5,4)(7,8,10,9)(12,13,15,14)(16,19,20,17), (1,6)(2,7)(3,8)(4,9)(5,10)(11,18)(12,19)(13,20)(14,16)(15,17), (1,18)(2,19)(3,20)(4,16)(5,17)(6,11)(7,12)(8,13)(9,14)(10,15), (6,18,11)(7,19,12)(8,20,13)(9,16,14)(10,17,15), (6,11)(7,12)(8,13)(9,14)(10,15) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)], [(2,3,5,4),(7,8,10,9),(12,13,15,14),(16,19,20,17)], [(1,6),(2,7),(3,8),(4,9),(5,10),(11,18),(12,19),(13,20),(14,16),(15,17)], [(1,18),(2,19),(3,20),(4,16),(5,17),(6,11),(7,12),(8,13),(9,14),(10,15)], [(6,18,11),(7,19,12),(8,20,13),(9,16,14),(10,17,15)], [(6,11),(7,12),(8,13),(9,14),(10,15)]])

G:=TransitiveGroup(20,121);

On 30 points - transitive group 30T110
Generators in S30
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(2 3 5 4)(6 7 9 8)(11 14 15 12)(16 19 20 17)(21 24 25 22)(26 29 30 27)
(1 13)(2 14)(3 15)(4 11)(5 12)(16 21)(17 22)(18 23)(19 24)(20 25)
(6 29)(7 30)(8 26)(9 27)(10 28)(16 21)(17 22)(18 23)(19 24)(20 25)
(1 18 28)(2 19 29)(3 20 30)(4 16 26)(5 17 27)(6 14 24)(7 15 25)(8 11 21)(9 12 22)(10 13 23)
(1 13)(2 14)(3 15)(4 11)(5 12)(6 19)(7 20)(8 16)(9 17)(10 18)(21 26)(22 27)(23 28)(24 29)(25 30)

G:=sub<Sym(30)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (2,3,5,4)(6,7,9,8)(11,14,15,12)(16,19,20,17)(21,24,25,22)(26,29,30,27), (1,13)(2,14)(3,15)(4,11)(5,12)(16,21)(17,22)(18,23)(19,24)(20,25), (6,29)(7,30)(8,26)(9,27)(10,28)(16,21)(17,22)(18,23)(19,24)(20,25), (1,18,28)(2,19,29)(3,20,30)(4,16,26)(5,17,27)(6,14,24)(7,15,25)(8,11,21)(9,12,22)(10,13,23), (1,13)(2,14)(3,15)(4,11)(5,12)(6,19)(7,20)(8,16)(9,17)(10,18)(21,26)(22,27)(23,28)(24,29)(25,30)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (2,3,5,4)(6,7,9,8)(11,14,15,12)(16,19,20,17)(21,24,25,22)(26,29,30,27), (1,13)(2,14)(3,15)(4,11)(5,12)(16,21)(17,22)(18,23)(19,24)(20,25), (6,29)(7,30)(8,26)(9,27)(10,28)(16,21)(17,22)(18,23)(19,24)(20,25), (1,18,28)(2,19,29)(3,20,30)(4,16,26)(5,17,27)(6,14,24)(7,15,25)(8,11,21)(9,12,22)(10,13,23), (1,13)(2,14)(3,15)(4,11)(5,12)(6,19)(7,20)(8,16)(9,17)(10,18)(21,26)(22,27)(23,28)(24,29)(25,30) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(2,3,5,4),(6,7,9,8),(11,14,15,12),(16,19,20,17),(21,24,25,22),(26,29,30,27)], [(1,13),(2,14),(3,15),(4,11),(5,12),(16,21),(17,22),(18,23),(19,24),(20,25)], [(6,29),(7,30),(8,26),(9,27),(10,28),(16,21),(17,22),(18,23),(19,24),(20,25)], [(1,18,28),(2,19,29),(3,20,30),(4,16,26),(5,17,27),(6,14,24),(7,15,25),(8,11,21),(9,12,22),(10,13,23)], [(1,13),(2,14),(3,15),(4,11),(5,12),(6,19),(7,20),(8,16),(9,17),(10,18),(21,26),(22,27),(23,28),(24,29),(25,30)]])

G:=TransitiveGroup(30,110);

On 30 points - transitive group 30T114
Generators in S30
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 13)(2 15 5 11)(3 12 4 14)(6 30 9 26)(7 27 8 29)(10 28)(16 24 20 22)(17 21 19 25)(18 23)
(1 13)(2 14)(3 15)(4 11)(5 12)(16 21)(17 22)(18 23)(19 24)(20 25)
(6 29)(7 30)(8 26)(9 27)(10 28)(16 21)(17 22)(18 23)(19 24)(20 25)
(1 18 28)(2 19 29)(3 20 30)(4 16 26)(5 17 27)(6 14 24)(7 15 25)(8 11 21)(9 12 22)(10 13 23)
(1 13)(2 14)(3 15)(4 11)(5 12)(6 19)(7 20)(8 16)(9 17)(10 18)(21 26)(22 27)(23 28)(24 29)(25 30)

G:=sub<Sym(30)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,13)(2,15,5,11)(3,12,4,14)(6,30,9,26)(7,27,8,29)(10,28)(16,24,20,22)(17,21,19,25)(18,23), (1,13)(2,14)(3,15)(4,11)(5,12)(16,21)(17,22)(18,23)(19,24)(20,25), (6,29)(7,30)(8,26)(9,27)(10,28)(16,21)(17,22)(18,23)(19,24)(20,25), (1,18,28)(2,19,29)(3,20,30)(4,16,26)(5,17,27)(6,14,24)(7,15,25)(8,11,21)(9,12,22)(10,13,23), (1,13)(2,14)(3,15)(4,11)(5,12)(6,19)(7,20)(8,16)(9,17)(10,18)(21,26)(22,27)(23,28)(24,29)(25,30)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,13)(2,15,5,11)(3,12,4,14)(6,30,9,26)(7,27,8,29)(10,28)(16,24,20,22)(17,21,19,25)(18,23), (1,13)(2,14)(3,15)(4,11)(5,12)(16,21)(17,22)(18,23)(19,24)(20,25), (6,29)(7,30)(8,26)(9,27)(10,28)(16,21)(17,22)(18,23)(19,24)(20,25), (1,18,28)(2,19,29)(3,20,30)(4,16,26)(5,17,27)(6,14,24)(7,15,25)(8,11,21)(9,12,22)(10,13,23), (1,13)(2,14)(3,15)(4,11)(5,12)(6,19)(7,20)(8,16)(9,17)(10,18)(21,26)(22,27)(23,28)(24,29)(25,30) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,13),(2,15,5,11),(3,12,4,14),(6,30,9,26),(7,27,8,29),(10,28),(16,24,20,22),(17,21,19,25),(18,23)], [(1,13),(2,14),(3,15),(4,11),(5,12),(16,21),(17,22),(18,23),(19,24),(20,25)], [(6,29),(7,30),(8,26),(9,27),(10,28),(16,21),(17,22),(18,23),(19,24),(20,25)], [(1,18,28),(2,19,29),(3,20,30),(4,16,26),(5,17,27),(6,14,24),(7,15,25),(8,11,21),(9,12,22),(10,13,23)], [(1,13),(2,14),(3,15),(4,11),(5,12),(6,19),(7,20),(8,16),(9,17),(10,18),(21,26),(22,27),(23,28),(24,29),(25,30)]])

G:=TransitiveGroup(30,114);

On 30 points - transitive group 30T115
Generators in S30
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(2 3 5 4)(6 7 9 8)(11 14 15 12)(16 19 20 17)(21 24 25 22)(26 29 30 27)
(1 13)(2 14)(3 15)(4 11)(5 12)(16 21)(17 22)(18 23)(19 24)(20 25)
(6 29)(7 30)(8 26)(9 27)(10 28)(16 21)(17 22)(18 23)(19 24)(20 25)
(1 18 28)(2 19 29)(3 20 30)(4 16 26)(5 17 27)(6 14 24)(7 15 25)(8 11 21)(9 12 22)(10 13 23)
(6 24)(7 25)(8 21)(9 22)(10 23)(16 26)(17 27)(18 28)(19 29)(20 30)

G:=sub<Sym(30)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (2,3,5,4)(6,7,9,8)(11,14,15,12)(16,19,20,17)(21,24,25,22)(26,29,30,27), (1,13)(2,14)(3,15)(4,11)(5,12)(16,21)(17,22)(18,23)(19,24)(20,25), (6,29)(7,30)(8,26)(9,27)(10,28)(16,21)(17,22)(18,23)(19,24)(20,25), (1,18,28)(2,19,29)(3,20,30)(4,16,26)(5,17,27)(6,14,24)(7,15,25)(8,11,21)(9,12,22)(10,13,23), (6,24)(7,25)(8,21)(9,22)(10,23)(16,26)(17,27)(18,28)(19,29)(20,30)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (2,3,5,4)(6,7,9,8)(11,14,15,12)(16,19,20,17)(21,24,25,22)(26,29,30,27), (1,13)(2,14)(3,15)(4,11)(5,12)(16,21)(17,22)(18,23)(19,24)(20,25), (6,29)(7,30)(8,26)(9,27)(10,28)(16,21)(17,22)(18,23)(19,24)(20,25), (1,18,28)(2,19,29)(3,20,30)(4,16,26)(5,17,27)(6,14,24)(7,15,25)(8,11,21)(9,12,22)(10,13,23), (6,24)(7,25)(8,21)(9,22)(10,23)(16,26)(17,27)(18,28)(19,29)(20,30) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(2,3,5,4),(6,7,9,8),(11,14,15,12),(16,19,20,17),(21,24,25,22),(26,29,30,27)], [(1,13),(2,14),(3,15),(4,11),(5,12),(16,21),(17,22),(18,23),(19,24),(20,25)], [(6,29),(7,30),(8,26),(9,27),(10,28),(16,21),(17,22),(18,23),(19,24),(20,25)], [(1,18,28),(2,19,29),(3,20,30),(4,16,26),(5,17,27),(6,14,24),(7,15,25),(8,11,21),(9,12,22),(10,13,23)], [(6,24),(7,25),(8,21),(9,22),(10,23),(16,26),(17,27),(18,28),(19,29),(20,30)]])

G:=TransitiveGroup(30,115);

On 30 points - transitive group 30T117
Generators in S30
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 13)(2 15 5 11)(3 12 4 14)(6 30 9 26)(7 27 8 29)(10 28)(16 24 20 22)(17 21 19 25)(18 23)
(1 13)(2 14)(3 15)(4 11)(5 12)(16 21)(17 22)(18 23)(19 24)(20 25)
(6 29)(7 30)(8 26)(9 27)(10 28)(16 21)(17 22)(18 23)(19 24)(20 25)
(1 18 28)(2 19 29)(3 20 30)(4 16 26)(5 17 27)(6 14 24)(7 15 25)(8 11 21)(9 12 22)(10 13 23)
(6 24)(7 25)(8 21)(9 22)(10 23)(16 26)(17 27)(18 28)(19 29)(20 30)

G:=sub<Sym(30)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,13)(2,15,5,11)(3,12,4,14)(6,30,9,26)(7,27,8,29)(10,28)(16,24,20,22)(17,21,19,25)(18,23), (1,13)(2,14)(3,15)(4,11)(5,12)(16,21)(17,22)(18,23)(19,24)(20,25), (6,29)(7,30)(8,26)(9,27)(10,28)(16,21)(17,22)(18,23)(19,24)(20,25), (1,18,28)(2,19,29)(3,20,30)(4,16,26)(5,17,27)(6,14,24)(7,15,25)(8,11,21)(9,12,22)(10,13,23), (6,24)(7,25)(8,21)(9,22)(10,23)(16,26)(17,27)(18,28)(19,29)(20,30)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,13)(2,15,5,11)(3,12,4,14)(6,30,9,26)(7,27,8,29)(10,28)(16,24,20,22)(17,21,19,25)(18,23), (1,13)(2,14)(3,15)(4,11)(5,12)(16,21)(17,22)(18,23)(19,24)(20,25), (6,29)(7,30)(8,26)(9,27)(10,28)(16,21)(17,22)(18,23)(19,24)(20,25), (1,18,28)(2,19,29)(3,20,30)(4,16,26)(5,17,27)(6,14,24)(7,15,25)(8,11,21)(9,12,22)(10,13,23), (6,24)(7,25)(8,21)(9,22)(10,23)(16,26)(17,27)(18,28)(19,29)(20,30) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,13),(2,15,5,11),(3,12,4,14),(6,30,9,26),(7,27,8,29),(10,28),(16,24,20,22),(17,21,19,25),(18,23)], [(1,13),(2,14),(3,15),(4,11),(5,12),(16,21),(17,22),(18,23),(19,24),(20,25)], [(6,29),(7,30),(8,26),(9,27),(10,28),(16,21),(17,22),(18,23),(19,24),(20,25)], [(1,18,28),(2,19,29),(3,20,30),(4,16,26),(5,17,27),(6,14,24),(7,15,25),(8,11,21),(9,12,22),(10,13,23)], [(6,24),(7,25),(8,21),(9,22),(10,23),(16,26),(17,27),(18,28),(19,29),(20,30)]])

G:=TransitiveGroup(30,117);

Matrix representation of F5xS4 in GL7(F61)

1000000
0100000
0010000
00000060
00010060
00001060
00000160
,
50000000
05000000
00500000
00000600
00060000
00000060
00006000
,
06010000
06000000
16000000
0001000
0000100
0000010
0000001
,
01600000
10600000
00600000
0001000
0000100
0000010
0000001
,
0010000
1000000
0100000
0001000
0000100
0000010
0000001
,
0100000
1000000
0010000
00060000
00006000
00000600
00000060

G:=sub<GL(7,GF(61))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,60,60,60,60],[50,0,0,0,0,0,0,0,50,0,0,0,0,0,0,0,50,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,60,0,0,0,0,0,0,0,0,60,0],[0,0,1,0,0,0,0,60,60,60,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,1,0,0,0,0,0,0,60,60,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60] >;

F5xS4 in GAP, Magma, Sage, TeX

F_5\times S_4
% in TeX

G:=Group("F5xS4");
// GroupNames label

G:=SmallGroup(480,1189);
// by ID

G=gap.SmallGroup(480,1189);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-5,-2,2,28,234,1684,858,5052,1286,2953,2232]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^5=b^4=c^2=d^2=e^3=f^2=1,b*a*b^-1=a^3,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,e*c*e^-1=f*c*f=c*d=d*c,e*d*e^-1=c,d*f=f*d,f*e*f=e^-1>;
// generators/relations

Export

Character table of F5xS4 in TeX

׿
x
:
Z
F
o
wr
Q
<