direct product, metabelian, soluble, monomial, A-group
Aliases: C2×A4×F5, C10⋊(C4×A4), D5⋊(C4×A4), (C23×F5)⋊C3, C22⋊(C6×F5), (D5×A4)⋊3C4, (C10×A4)⋊2C4, (C22×F5)⋊C6, (C22×C10)⋊C12, (C22×D5)⋊C12, (C23×D5).C6, D5.(C22×A4), C23⋊2(C3×F5), D10.4(C2×A4), (D5×A4).3C22, C5⋊(C2×C4×A4), (C2×C10)⋊(C2×C12), (C2×D5×A4).3C2, (C5×A4)⋊3(C2×C4), (C22×D5).(C2×C6), SmallGroup(480,1192)
Series: Derived ►Chief ►Lower central ►Upper central
C2×C10 — C2×A4×F5 |
Generators and relations for C2×A4×F5
G = < a,b,c,d,e,f | a2=b2=c2=d3=e5=f4=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, dbd-1=bc=cb, be=eb, bf=fb, dcd-1=b, ce=ec, cf=fc, de=ed, df=fd, fef-1=e3 >
Subgroups: 844 in 132 conjugacy classes, 30 normal (24 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, C6, C2×C4, C23, C23, D5, D5, C10, C10, C12, A4, C2×C6, C15, C22×C4, C24, F5, F5, D10, D10, C2×C10, C2×C10, C2×C12, C2×A4, C2×A4, C3×D5, C30, C23×C4, C2×F5, C2×F5, C22×D5, C22×D5, C22×C10, C4×A4, C22×A4, C3×F5, C5×A4, C6×D5, C22×F5, C22×F5, C23×D5, C2×C4×A4, D5×A4, C6×F5, C10×A4, C23×F5, A4×F5, C2×D5×A4, C2×A4×F5
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, C12, A4, C2×C6, F5, C2×C12, C2×A4, C2×F5, C4×A4, C22×A4, C3×F5, C2×C4×A4, C6×F5, A4×F5, C2×A4×F5
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)
(1 6)(2 7)(3 8)(4 9)(5 10)(21 26)(22 27)(23 28)(24 29)(25 30)
(1 21 11)(2 22 12)(3 23 13)(4 24 14)(5 25 15)(6 26 16)(7 27 17)(8 28 18)(9 29 19)(10 30 20)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 6)(2 8 5 9)(3 10 4 7)(11 16)(12 18 15 19)(13 20 14 17)(21 26)(22 28 25 29)(23 30 24 27)
G:=sub<Sym(30)| (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20), (1,6)(2,7)(3,8)(4,9)(5,10)(21,26)(22,27)(23,28)(24,29)(25,30), (1,21,11)(2,22,12)(3,23,13)(4,24,14)(5,25,15)(6,26,16)(7,27,17)(8,28,18)(9,29,19)(10,30,20), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,6)(2,8,5,9)(3,10,4,7)(11,16)(12,18,15,19)(13,20,14,17)(21,26)(22,28,25,29)(23,30,24,27)>;
G:=Group( (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20), (1,6)(2,7)(3,8)(4,9)(5,10)(21,26)(22,27)(23,28)(24,29)(25,30), (1,21,11)(2,22,12)(3,23,13)(4,24,14)(5,25,15)(6,26,16)(7,27,17)(8,28,18)(9,29,19)(10,30,20), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,6)(2,8,5,9)(3,10,4,7)(11,16)(12,18,15,19)(13,20,14,17)(21,26)(22,28,25,29)(23,30,24,27) );
G=PermutationGroup([[(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30)], [(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20)], [(1,6),(2,7),(3,8),(4,9),(5,10),(21,26),(22,27),(23,28),(24,29),(25,30)], [(1,21,11),(2,22,12),(3,23,13),(4,24,14),(5,25,15),(6,26,16),(7,27,17),(8,28,18),(9,29,19),(10,30,20)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,6),(2,8,5,9),(3,10,4,7),(11,16),(12,18,15,19),(13,20,14,17),(21,26),(22,28,25,29),(23,30,24,27)]])
G:=TransitiveGroup(30,107);
40 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 5 | 6A | 6B | 6C | 6D | 6E | 6F | 10A | 10B | 10C | 12A | ··· | 12H | 15A | 15B | 30A | 30B |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 12 | ··· | 12 | 15 | 15 | 30 | 30 |
size | 1 | 1 | 3 | 3 | 5 | 5 | 15 | 15 | 4 | 4 | 5 | 5 | 5 | 5 | 15 | 15 | 15 | 15 | 4 | 4 | 4 | 20 | 20 | 20 | 20 | 4 | 12 | 12 | 20 | ··· | 20 | 16 | 16 | 16 | 16 |
40 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 12 | 12 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | |||||||||||
image | C1 | C2 | C2 | C3 | C4 | C4 | C6 | C6 | C12 | C12 | A4×F5 | C2×A4×F5 | A4 | C2×A4 | C2×A4 | C4×A4 | C4×A4 | F5 | C2×F5 | C3×F5 | C6×F5 |
kernel | C2×A4×F5 | A4×F5 | C2×D5×A4 | C23×F5 | D5×A4 | C10×A4 | C22×F5 | C23×D5 | C22×D5 | C22×C10 | C2 | C1 | C2×F5 | F5 | D10 | D5 | C10 | C2×A4 | A4 | C23 | C22 |
# reps | 1 | 2 | 1 | 2 | 2 | 2 | 4 | 2 | 4 | 4 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 2 |
Matrix representation of C2×A4×F5 ►in GL7(𝔽61)
60 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 60 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
60 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 60 | 0 | 0 | 0 | 0 | 0 |
14 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
60 | 0 | 0 | 0 | 0 | 0 | 0 |
48 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
13 | 59 | 0 | 0 | 0 | 0 | 0 |
0 | 48 | 1 | 0 | 0 | 0 | 0 |
0 | 14 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 60 | 60 | 60 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
50 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 50 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 50 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 60 | 60 | 60 | 60 |
G:=sub<GL(7,GF(61))| [60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[60,0,14,0,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[60,48,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[13,0,0,0,0,0,0,59,48,14,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,1,0,0,0,0,0,60,0,1,0,0,0,0,60,0,0,1,0,0,0,60,0,0,0],[50,0,0,0,0,0,0,0,50,0,0,0,0,0,0,0,50,0,0,0,0,0,0,0,1,0,0,60,0,0,0,0,0,1,60,0,0,0,0,0,0,60,0,0,0,0,1,0,60] >;
C2×A4×F5 in GAP, Magma, Sage, TeX
C_2\times A_4\times F_5
% in TeX
G:=Group("C2xA4xF5");
// GroupNames label
G:=SmallGroup(480,1192);
// by ID
G=gap.SmallGroup(480,1192);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,2,-5,84,648,271,9414,1595]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^3=e^5=f^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,d*b*d^-1=b*c=c*b,b*e=e*b,b*f=f*b,d*c*d^-1=b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^3>;
// generators/relations