Copied to
clipboard

G = C2×A4×F5order 480 = 25·3·5

Direct product of C2, A4 and F5

direct product, metabelian, soluble, monomial, A-group

Aliases: C2×A4×F5, C10⋊(C4×A4), D5⋊(C4×A4), (C23×F5)⋊C3, C22⋊(C6×F5), (D5×A4)⋊3C4, (C10×A4)⋊2C4, (C22×F5)⋊C6, (C22×C10)⋊C12, (C22×D5)⋊C12, (C23×D5).C6, D5.(C22×A4), C232(C3×F5), D10.4(C2×A4), (D5×A4).3C22, C5⋊(C2×C4×A4), (C2×C10)⋊(C2×C12), (C2×D5×A4).3C2, (C5×A4)⋊3(C2×C4), (C22×D5).(C2×C6), SmallGroup(480,1192)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C2×A4×F5
C1C5C2×C10C22×D5D5×A4A4×F5 — C2×A4×F5
C2×C10 — C2×A4×F5
C1C2

Generators and relations for C2×A4×F5
 G = < a,b,c,d,e,f | a2=b2=c2=d3=e5=f4=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, dbd-1=bc=cb, be=eb, bf=fb, dcd-1=b, ce=ec, cf=fc, de=ed, df=fd, fef-1=e3 >

Subgroups: 844 in 132 conjugacy classes, 30 normal (24 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, C6, C2×C4, C23, C23, D5, D5, C10, C10, C12, A4, C2×C6, C15, C22×C4, C24, F5, F5, D10, D10, C2×C10, C2×C10, C2×C12, C2×A4, C2×A4, C3×D5, C30, C23×C4, C2×F5, C2×F5, C22×D5, C22×D5, C22×C10, C4×A4, C22×A4, C3×F5, C5×A4, C6×D5, C22×F5, C22×F5, C23×D5, C2×C4×A4, D5×A4, C6×F5, C10×A4, C23×F5, A4×F5, C2×D5×A4, C2×A4×F5
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, C12, A4, C2×C6, F5, C2×C12, C2×A4, C2×F5, C4×A4, C22×A4, C3×F5, C2×C4×A4, C6×F5, A4×F5, C2×A4×F5

Permutation representations of C2×A4×F5
On 30 points - transitive group 30T107
Generators in S30
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)
(1 6)(2 7)(3 8)(4 9)(5 10)(21 26)(22 27)(23 28)(24 29)(25 30)
(1 21 11)(2 22 12)(3 23 13)(4 24 14)(5 25 15)(6 26 16)(7 27 17)(8 28 18)(9 29 19)(10 30 20)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 6)(2 8 5 9)(3 10 4 7)(11 16)(12 18 15 19)(13 20 14 17)(21 26)(22 28 25 29)(23 30 24 27)

G:=sub<Sym(30)| (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20), (1,6)(2,7)(3,8)(4,9)(5,10)(21,26)(22,27)(23,28)(24,29)(25,30), (1,21,11)(2,22,12)(3,23,13)(4,24,14)(5,25,15)(6,26,16)(7,27,17)(8,28,18)(9,29,19)(10,30,20), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,6)(2,8,5,9)(3,10,4,7)(11,16)(12,18,15,19)(13,20,14,17)(21,26)(22,28,25,29)(23,30,24,27)>;

G:=Group( (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20), (1,6)(2,7)(3,8)(4,9)(5,10)(21,26)(22,27)(23,28)(24,29)(25,30), (1,21,11)(2,22,12)(3,23,13)(4,24,14)(5,25,15)(6,26,16)(7,27,17)(8,28,18)(9,29,19)(10,30,20), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,6)(2,8,5,9)(3,10,4,7)(11,16)(12,18,15,19)(13,20,14,17)(21,26)(22,28,25,29)(23,30,24,27) );

G=PermutationGroup([[(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30)], [(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20)], [(1,6),(2,7),(3,8),(4,9),(5,10),(21,26),(22,27),(23,28),(24,29),(25,30)], [(1,21,11),(2,22,12),(3,23,13),(4,24,14),(5,25,15),(6,26,16),(7,27,17),(8,28,18),(9,29,19),(10,30,20)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,6),(2,8,5,9),(3,10,4,7),(11,16),(12,18,15,19),(13,20,14,17),(21,26),(22,28,25,29),(23,30,24,27)]])

G:=TransitiveGroup(30,107);

40 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B4A4B4C4D4E4F4G4H 5 6A6B6C6D6E6F10A10B10C12A···12H15A15B30A30B
order122222223344444444566666610101012···1215153030
size113355151544555515151515444202020204121220···2016161616

40 irreducible representations

dim11111111111212333334444
type++++++++++
imageC1C2C2C3C4C4C6C6C12C12A4×F5C2×A4×F5A4C2×A4C2×A4C4×A4C4×A4F5C2×F5C3×F5C6×F5
kernelC2×A4×F5A4×F5C2×D5×A4C23×F5D5×A4C10×A4C22×F5C23×D5C22×D5C22×C10C2C1C2×F5F5D10D5C10C2×A4A4C23C22
# reps121222424411121221122

Matrix representation of C2×A4×F5 in GL7(𝔽61)

60000000
06000000
00600000
0001000
0000100
0000010
0000001
,
60000000
06000000
14010000
0001000
0000100
0000010
0000001
,
60000000
48100000
00600000
0001000
0000100
0000010
0000001
,
135900000
04810000
01400000
0001000
0000100
0000010
0000001
,
1000000
0100000
0010000
00060606060
0001000
0000100
0000010
,
50000000
05000000
00500000
0001000
0000001
0000100
00060606060

G:=sub<GL(7,GF(61))| [60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[60,0,14,0,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[60,48,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[13,0,0,0,0,0,0,59,48,14,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,1,0,0,0,0,0,60,0,1,0,0,0,0,60,0,0,1,0,0,0,60,0,0,0],[50,0,0,0,0,0,0,0,50,0,0,0,0,0,0,0,50,0,0,0,0,0,0,0,1,0,0,60,0,0,0,0,0,1,60,0,0,0,0,0,0,60,0,0,0,0,1,0,60] >;

C2×A4×F5 in GAP, Magma, Sage, TeX

C_2\times A_4\times F_5
% in TeX

G:=Group("C2xA4xF5");
// GroupNames label

G:=SmallGroup(480,1192);
// by ID

G=gap.SmallGroup(480,1192);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,2,-5,84,648,271,9414,1595]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^3=e^5=f^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,d*b*d^-1=b*c=c*b,b*e=e*b,b*f=f*b,d*c*d^-1=b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^3>;
// generators/relations

׿
×
𝔽