Extensions 1→N→G→Q→1 with N=C4.Dic5 and Q=S3

Direct product G=N×Q with N=C4.Dic5 and Q=S3
dρLabelID
S3×C4.Dic51204S3xC4.Dic5480,363

Semidirect products G=N:Q with N=C4.Dic5 and Q=S3
extensionφ:Q→Out NdρLabelID
C4.Dic51S3 = D6013C4φ: S3/C3C2 ⊆ Out C4.Dic51204C4.Dic5:1S3480,56
C4.Dic52S3 = C20.5D12φ: S3/C3C2 ⊆ Out C4.Dic51204C4.Dic5:2S3480,35
C4.Dic53S3 = C60.29D4φ: S3/C3C2 ⊆ Out C4.Dic51204+C4.Dic5:3S3480,36
C4.Dic54S3 = C60.98D4φ: S3/C3C2 ⊆ Out C4.Dic51204C4.Dic5:4S3480,54
C4.Dic55S3 = D12.Dic5φ: S3/C3C2 ⊆ Out C4.Dic52404C4.Dic5:5S3480,364
C4.Dic56S3 = D154M4(2)φ: S3/C3C2 ⊆ Out C4.Dic51204C4.Dic5:6S3480,368
C4.Dic57S3 = D6036C22φ: S3/C3C2 ⊆ Out C4.Dic51204C4.Dic5:7S3480,380
C4.Dic58S3 = C60.38D4φ: S3/C3C2 ⊆ Out C4.Dic51204+C4.Dic5:8S3480,381
C4.Dic59S3 = C20.D12φ: S3/C3C2 ⊆ Out C4.Dic52404C4.Dic5:9S3480,397
C4.Dic510S3 = D12.33D10φ: S3/C3C2 ⊆ Out C4.Dic52404-C4.Dic5:10S3480,398
C4.Dic511S3 = D60.4C4φ: trivial image2404C4.Dic5:11S3480,367

Non-split extensions G=N.Q with N=C4.Dic5 and Q=S3
extensionφ:Q→Out NdρLabelID
C4.Dic5.1S3 = C12.59D20φ: S3/C3C2 ⊆ Out C4.Dic52404C4.Dic5.1S3480,69
C4.Dic5.2S3 = C60.54D4φ: S3/C3C2 ⊆ Out C4.Dic52404C4.Dic5.2S3480,38
C4.Dic5.3S3 = C60.31D4φ: S3/C3C2 ⊆ Out C4.Dic52404-C4.Dic5.3S3480,39
C4.Dic5.4S3 = C60.D4φ: S3/C3C2 ⊆ Out C4.Dic52404C4.Dic5.4S3480,68

׿
×
𝔽