metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C60.29D4, C20.47D12, C12.47D20, (C2×C20).42D6, C4.Dic3⋊3D5, C4.Dic5⋊3S3, (C2×D60).11C2, (C2×C12).43D10, C12.7(C5⋊D4), C15⋊4(C4.D4), C20.6(C3⋊D4), C10.17(D6⋊C4), C5⋊2(C12.46D4), C4.12(C5⋊D12), C3⋊1(C20.46D4), C4.12(C3⋊D20), (C2×C60).91C22, (C22×D15).2C4, C6.2(D10⋊C4), C2.3(D30⋊4C4), C30.43(C22⋊C4), C22.3(D30.C2), (C2×C4).3(S3×D5), (C2×C6).1(C4×D5), (C2×C10).24(C4×S3), (C2×C30).82(C2×C4), (C3×C4.Dic5)⋊7C2, (C5×C4.Dic3)⋊7C2, SmallGroup(480,36)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C60.29D4
G = < a,b,c | a60=c2=1, b4=a30, bab-1=a19, cac=a-1, cbc=a45b3 >
Subgroups: 764 in 92 conjugacy classes, 32 normal (30 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, C6, C6, C8, C2×C4, D4, C23, D5, C10, C10, C12, D6, C2×C6, C15, M4(2), C2×D4, C20, D10, C2×C10, C3⋊C8, C24, D12, C2×C12, C22×S3, D15, C30, C30, C4.D4, C5⋊2C8, C40, D20, C2×C20, C22×D5, C4.Dic3, C3×M4(2), C2×D12, C60, D30, C2×C30, C4.Dic5, C5×M4(2), C2×D20, C12.46D4, C5×C3⋊C8, C3×C5⋊2C8, D60, C2×C60, C22×D15, C20.46D4, C3×C4.Dic5, C5×C4.Dic3, C2×D60, C60.29D4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D5, D6, C22⋊C4, D10, C4×S3, D12, C3⋊D4, C4.D4, C4×D5, D20, C5⋊D4, D6⋊C4, S3×D5, D10⋊C4, C12.46D4, D30.C2, C3⋊D20, C5⋊D12, C20.46D4, D30⋊4C4, C60.29D4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 61 46 76 31 91 16 106)(2 80 47 95 32 110 17 65)(3 99 48 114 33 69 18 84)(4 118 49 73 34 88 19 103)(5 77 50 92 35 107 20 62)(6 96 51 111 36 66 21 81)(7 115 52 70 37 85 22 100)(8 74 53 89 38 104 23 119)(9 93 54 108 39 63 24 78)(10 112 55 67 40 82 25 97)(11 71 56 86 41 101 26 116)(12 90 57 105 42 120 27 75)(13 109 58 64 43 79 28 94)(14 68 59 83 44 98 29 113)(15 87 60 102 45 117 30 72)
(2 60)(3 59)(4 58)(5 57)(6 56)(7 55)(8 54)(9 53)(10 52)(11 51)(12 50)(13 49)(14 48)(15 47)(16 46)(17 45)(18 44)(19 43)(20 42)(21 41)(22 40)(23 39)(24 38)(25 37)(26 36)(27 35)(28 34)(29 33)(30 32)(61 91)(62 90)(63 89)(64 88)(65 87)(66 86)(67 85)(68 84)(69 83)(70 82)(71 81)(72 80)(73 79)(74 78)(75 77)(92 120)(93 119)(94 118)(95 117)(96 116)(97 115)(98 114)(99 113)(100 112)(101 111)(102 110)(103 109)(104 108)(105 107)
G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,61,46,76,31,91,16,106)(2,80,47,95,32,110,17,65)(3,99,48,114,33,69,18,84)(4,118,49,73,34,88,19,103)(5,77,50,92,35,107,20,62)(6,96,51,111,36,66,21,81)(7,115,52,70,37,85,22,100)(8,74,53,89,38,104,23,119)(9,93,54,108,39,63,24,78)(10,112,55,67,40,82,25,97)(11,71,56,86,41,101,26,116)(12,90,57,105,42,120,27,75)(13,109,58,64,43,79,28,94)(14,68,59,83,44,98,29,113)(15,87,60,102,45,117,30,72), (2,60)(3,59)(4,58)(5,57)(6,56)(7,55)(8,54)(9,53)(10,52)(11,51)(12,50)(13,49)(14,48)(15,47)(16,46)(17,45)(18,44)(19,43)(20,42)(21,41)(22,40)(23,39)(24,38)(25,37)(26,36)(27,35)(28,34)(29,33)(30,32)(61,91)(62,90)(63,89)(64,88)(65,87)(66,86)(67,85)(68,84)(69,83)(70,82)(71,81)(72,80)(73,79)(74,78)(75,77)(92,120)(93,119)(94,118)(95,117)(96,116)(97,115)(98,114)(99,113)(100,112)(101,111)(102,110)(103,109)(104,108)(105,107)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,61,46,76,31,91,16,106)(2,80,47,95,32,110,17,65)(3,99,48,114,33,69,18,84)(4,118,49,73,34,88,19,103)(5,77,50,92,35,107,20,62)(6,96,51,111,36,66,21,81)(7,115,52,70,37,85,22,100)(8,74,53,89,38,104,23,119)(9,93,54,108,39,63,24,78)(10,112,55,67,40,82,25,97)(11,71,56,86,41,101,26,116)(12,90,57,105,42,120,27,75)(13,109,58,64,43,79,28,94)(14,68,59,83,44,98,29,113)(15,87,60,102,45,117,30,72), (2,60)(3,59)(4,58)(5,57)(6,56)(7,55)(8,54)(9,53)(10,52)(11,51)(12,50)(13,49)(14,48)(15,47)(16,46)(17,45)(18,44)(19,43)(20,42)(21,41)(22,40)(23,39)(24,38)(25,37)(26,36)(27,35)(28,34)(29,33)(30,32)(61,91)(62,90)(63,89)(64,88)(65,87)(66,86)(67,85)(68,84)(69,83)(70,82)(71,81)(72,80)(73,79)(74,78)(75,77)(92,120)(93,119)(94,118)(95,117)(96,116)(97,115)(98,114)(99,113)(100,112)(101,111)(102,110)(103,109)(104,108)(105,107) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,61,46,76,31,91,16,106),(2,80,47,95,32,110,17,65),(3,99,48,114,33,69,18,84),(4,118,49,73,34,88,19,103),(5,77,50,92,35,107,20,62),(6,96,51,111,36,66,21,81),(7,115,52,70,37,85,22,100),(8,74,53,89,38,104,23,119),(9,93,54,108,39,63,24,78),(10,112,55,67,40,82,25,97),(11,71,56,86,41,101,26,116),(12,90,57,105,42,120,27,75),(13,109,58,64,43,79,28,94),(14,68,59,83,44,98,29,113),(15,87,60,102,45,117,30,72)], [(2,60),(3,59),(4,58),(5,57),(6,56),(7,55),(8,54),(9,53),(10,52),(11,51),(12,50),(13,49),(14,48),(15,47),(16,46),(17,45),(18,44),(19,43),(20,42),(21,41),(22,40),(23,39),(24,38),(25,37),(26,36),(27,35),(28,34),(29,33),(30,32),(61,91),(62,90),(63,89),(64,88),(65,87),(66,86),(67,85),(68,84),(69,83),(70,82),(71,81),(72,80),(73,79),(74,78),(75,77),(92,120),(93,119),(94,118),(95,117),(96,116),(97,115),(98,114),(99,113),(100,112),(101,111),(102,110),(103,109),(104,108),(105,107)]])
57 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 5A | 5B | 6A | 6B | 8A | 8B | 8C | 8D | 10A | 10B | 10C | 10D | 12A | 12B | 12C | 15A | 15B | 20A | 20B | 20C | 20D | 20E | 20F | 24A | 24B | 24C | 24D | 30A | ··· | 30F | 40A | ··· | 40H | 60A | ··· | 60H |
order | 1 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 5 | 5 | 6 | 6 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 12 | 12 | 12 | 15 | 15 | 20 | 20 | 20 | 20 | 20 | 20 | 24 | 24 | 24 | 24 | 30 | ··· | 30 | 40 | ··· | 40 | 60 | ··· | 60 |
size | 1 | 1 | 2 | 60 | 60 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 12 | 12 | 20 | 20 | 2 | 2 | 4 | 4 | 2 | 2 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 20 | 20 | 20 | 20 | 4 | ··· | 4 | 12 | ··· | 12 | 4 | ··· | 4 |
57 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C4 | S3 | D4 | D5 | D6 | D10 | D12 | C3⋊D4 | C4×S3 | D20 | C5⋊D4 | C4×D5 | C4.D4 | S3×D5 | C12.46D4 | C3⋊D20 | C5⋊D12 | D30.C2 | C20.46D4 | C60.29D4 |
kernel | C60.29D4 | C3×C4.Dic5 | C5×C4.Dic3 | C2×D60 | C22×D15 | C4.Dic5 | C60 | C4.Dic3 | C2×C20 | C2×C12 | C20 | C20 | C2×C10 | C12 | C12 | C2×C6 | C15 | C2×C4 | C5 | C4 | C4 | C22 | C3 | C1 |
# reps | 1 | 1 | 1 | 1 | 4 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 8 |
Matrix representation of C60.29D4 ►in GL4(𝔽241) generated by
57 | 220 | 0 | 0 |
21 | 191 | 0 | 0 |
0 | 0 | 21 | 184 |
0 | 0 | 57 | 6 |
0 | 0 | 44 | 3 |
0 | 0 | 78 | 197 |
1 | 0 | 0 | 0 |
51 | 240 | 0 | 0 |
1 | 0 | 0 | 0 |
51 | 240 | 0 | 0 |
0 | 0 | 240 | 0 |
0 | 0 | 190 | 1 |
G:=sub<GL(4,GF(241))| [57,21,0,0,220,191,0,0,0,0,21,57,0,0,184,6],[0,0,1,51,0,0,0,240,44,78,0,0,3,197,0,0],[1,51,0,0,0,240,0,0,0,0,240,190,0,0,0,1] >;
C60.29D4 in GAP, Magma, Sage, TeX
C_{60}._{29}D_4
% in TeX
G:=Group("C60.29D4");
// GroupNames label
G:=SmallGroup(480,36);
// by ID
G=gap.SmallGroup(480,36);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,28,141,92,219,100,675,346,1356,18822]);
// Polycyclic
G:=Group<a,b,c|a^60=c^2=1,b^4=a^30,b*a*b^-1=a^19,c*a*c=a^-1,c*b*c=a^45*b^3>;
// generators/relations