Extensions 1→N→G→Q→1 with N=C5×Q8 and Q=C12

Direct product G=N×Q with N=C5×Q8 and Q=C12
dρLabelID
Q8×C60480Q8xC60480,924

Semidirect products G=N:Q with N=C5×Q8 and Q=C12
extensionφ:Q→Out NdρLabelID
(C5×Q8)⋊C12 = F5×SL2(𝔽3)φ: C12/C1C12 ⊆ Out C5×Q8408-(C5xQ8):C12480,965
(C5×Q8)⋊2C12 = Dic5×SL2(𝔽3)φ: C12/C2C6 ⊆ Out C5×Q8160(C5xQ8):2C12480,266
(C5×Q8)⋊3C12 = C3×Q8⋊F5φ: C12/C3C4 ⊆ Out C5×Q81208(C5xQ8):3C12480,289
(C5×Q8)⋊4C12 = C3×Q82F5φ: C12/C3C4 ⊆ Out C5×Q81208(C5xQ8):4C12480,290
(C5×Q8)⋊5C12 = C3×Q8×F5φ: C12/C3C4 ⊆ Out C5×Q81208(C5xQ8):5C12480,1056
(C5×Q8)⋊6C12 = C20×SL2(𝔽3)φ: C12/C4C3 ⊆ Out C5×Q8160(C5xQ8):6C12480,655
(C5×Q8)⋊7C12 = C3×Q8⋊Dic5φ: C12/C6C2 ⊆ Out C5×Q8480(C5xQ8):7C12480,113
(C5×Q8)⋊8C12 = C3×D42Dic5φ: C12/C6C2 ⊆ Out C5×Q81204(C5xQ8):8C12480,115
(C5×Q8)⋊9C12 = C3×Q8×Dic5φ: C12/C6C2 ⊆ Out C5×Q8480(C5xQ8):9C12480,738
(C5×Q8)⋊10C12 = C15×Q8⋊C4φ: C12/C6C2 ⊆ Out C5×Q8480(C5xQ8):10C12480,206
(C5×Q8)⋊11C12 = C15×C4≀C2φ: C12/C6C2 ⊆ Out C5×Q81202(C5xQ8):11C12480,207

Non-split extensions G=N.Q with N=C5×Q8 and Q=C12
extensionφ:Q→Out NdρLabelID
(C5×Q8).C12 = SL2(𝔽3).F5φ: C12/C1C12 ⊆ Out C5×Q81608+(C5xQ8).C12480,964
(C5×Q8).2C12 = SL2(𝔽3).Dic5φ: C12/C2C6 ⊆ Out C5×Q81604(C5xQ8).2C12480,267
(C5×Q8).3C12 = C3×Q8.F5φ: C12/C3C4 ⊆ Out C5×Q82408(C5xQ8).3C12480,1055
(C5×Q8).4C12 = C5×C8.A4φ: C12/C4C3 ⊆ Out C5×Q81602(C5xQ8).4C12480,660
(C5×Q8).5C12 = C3×D4.Dic5φ: C12/C6C2 ⊆ Out C5×Q82404(C5xQ8).5C12480,741
(C5×Q8).6C12 = C15×C8○D4φ: trivial image2402(C5xQ8).6C12480,936

׿
×
𝔽