Copied to
clipboard

G = F5×SL2(𝔽3)  order 480 = 25·3·5

Direct product of F5 and SL2(𝔽3)

direct product, non-abelian, soluble

Aliases: F5×SL2(𝔽3), (Q8×F5)⋊C3, Q8⋊(C3×F5), (C5×Q8)⋊C12, (C2×F5).A4, (Q8×D5).C6, C2.3(A4×F5), C10.2(C4×A4), C5⋊(C4×SL2(𝔽3)), D5.(C4.A4), D10.3(C2×A4), D5.(C2×SL2(𝔽3)), (C5×SL2(𝔽3))⋊3C4, (D5×SL2(𝔽3)).3C2, SmallGroup(480,965)

Series: Derived Chief Lower central Upper central

C1C2C5×Q8 — F5×SL2(𝔽3)
C1C2C10C5×Q8Q8×D5D5×SL2(𝔽3) — F5×SL2(𝔽3)
C5×Q8 — F5×SL2(𝔽3)
C1C2

Generators and relations for F5×SL2(𝔽3)
 G = < a,b,c,d,e | a5=b4=c4=e3=1, d2=c2, bab-1=a3, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=c-1, ece-1=d, ede-1=cd >

Subgroups: 378 in 60 conjugacy classes, 18 normal (16 characteristic)
C1, C2, C2, C3, C4, C22, C5, C6, C2×C4, Q8, Q8, D5, C10, C12, C2×C6, C15, C42, C4⋊C4, C2×Q8, Dic5, C20, F5, F5, D10, SL2(𝔽3), C2×C12, C3×D5, C30, C4×Q8, Dic10, C4×D5, C5×Q8, C2×F5, C2×F5, C2×SL2(𝔽3), C3×F5, C6×D5, C4×F5, C4⋊F5, Q8×D5, C4×SL2(𝔽3), C5×SL2(𝔽3), C6×F5, Q8×F5, D5×SL2(𝔽3), F5×SL2(𝔽3)
Quotients: C1, C2, C3, C4, C6, C12, A4, F5, SL2(𝔽3), C2×A4, C4×A4, C2×SL2(𝔽3), C4.A4, C3×F5, C4×SL2(𝔽3), A4×F5, F5×SL2(𝔽3)

Smallest permutation representation of F5×SL2(𝔽3)
On 40 points
Generators in S40
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 13)(2 15 5 11)(3 12 4 14)(6 39 10 37)(7 36 9 40)(8 38)(16 24 20 22)(17 21 19 25)(18 23)(26 34 30 32)(27 31 29 35)(28 33)
(1 23 13 18)(2 24 14 19)(3 25 15 20)(4 21 11 16)(5 22 12 17)(6 26 36 31)(7 27 37 32)(8 28 38 33)(9 29 39 34)(10 30 40 35)
(1 8 13 38)(2 9 14 39)(3 10 15 40)(4 6 11 36)(5 7 12 37)(16 26 21 31)(17 27 22 32)(18 28 23 33)(19 29 24 34)(20 30 25 35)
(6 21 31)(7 22 32)(8 23 33)(9 24 34)(10 25 35)(16 26 36)(17 27 37)(18 28 38)(19 29 39)(20 30 40)

G:=sub<Sym(40)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,13)(2,15,5,11)(3,12,4,14)(6,39,10,37)(7,36,9,40)(8,38)(16,24,20,22)(17,21,19,25)(18,23)(26,34,30,32)(27,31,29,35)(28,33), (1,23,13,18)(2,24,14,19)(3,25,15,20)(4,21,11,16)(5,22,12,17)(6,26,36,31)(7,27,37,32)(8,28,38,33)(9,29,39,34)(10,30,40,35), (1,8,13,38)(2,9,14,39)(3,10,15,40)(4,6,11,36)(5,7,12,37)(16,26,21,31)(17,27,22,32)(18,28,23,33)(19,29,24,34)(20,30,25,35), (6,21,31)(7,22,32)(8,23,33)(9,24,34)(10,25,35)(16,26,36)(17,27,37)(18,28,38)(19,29,39)(20,30,40)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,13)(2,15,5,11)(3,12,4,14)(6,39,10,37)(7,36,9,40)(8,38)(16,24,20,22)(17,21,19,25)(18,23)(26,34,30,32)(27,31,29,35)(28,33), (1,23,13,18)(2,24,14,19)(3,25,15,20)(4,21,11,16)(5,22,12,17)(6,26,36,31)(7,27,37,32)(8,28,38,33)(9,29,39,34)(10,30,40,35), (1,8,13,38)(2,9,14,39)(3,10,15,40)(4,6,11,36)(5,7,12,37)(16,26,21,31)(17,27,22,32)(18,28,23,33)(19,29,24,34)(20,30,25,35), (6,21,31)(7,22,32)(8,23,33)(9,24,34)(10,25,35)(16,26,36)(17,27,37)(18,28,38)(19,29,39)(20,30,40) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,13),(2,15,5,11),(3,12,4,14),(6,39,10,37),(7,36,9,40),(8,38),(16,24,20,22),(17,21,19,25),(18,23),(26,34,30,32),(27,31,29,35),(28,33)], [(1,23,13,18),(2,24,14,19),(3,25,15,20),(4,21,11,16),(5,22,12,17),(6,26,36,31),(7,27,37,32),(8,28,38,33),(9,29,39,34),(10,30,40,35)], [(1,8,13,38),(2,9,14,39),(3,10,15,40),(4,6,11,36),(5,7,12,37),(16,26,21,31),(17,27,22,32),(18,28,23,33),(19,29,24,34),(20,30,25,35)], [(6,21,31),(7,22,32),(8,23,33),(9,24,34),(10,25,35),(16,26,36),(17,27,37),(18,28,38),(19,29,39),(20,30,40)]])

35 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D4E4F4G4H 5 6A6B6C6D6E6F 10 12A···12H15A15B 20 30A30B
order1222334444444456666661012···121515203030
size1155445555630303044420202020420···201616241616

35 irreducible representations

dim111111122223334488
type+++-+++-
imageC1C2C3C4C6C12A4×F5SL2(𝔽3)SL2(𝔽3)C4.A4A4C2×A4C4×A4F5C3×F5F5×SL2(𝔽3)F5×SL2(𝔽3)
kernelF5×SL2(𝔽3)D5×SL2(𝔽3)Q8×F5C5×SL2(𝔽3)Q8×D5C5×Q8C2F5F5D5C2×F5D10C10SL2(𝔽3)Q8C1C1
# reps11222412461121212

Matrix representation of F5×SL2(𝔽3) in GL6(𝔽61)

100000
010000
0000060
0010060
0001060
0000160
,
1100000
0110000
000010
001000
000001
000100
,
010000
6000000
001000
000100
000010
000001
,
48140000
14130000
001000
000100
000010
000001
,
1140000
0130000
0047000
0004700
0000470
0000047

G:=sub<GL(6,GF(61))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,60,60,60,60],[11,0,0,0,0,0,0,11,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0],[0,60,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[48,14,0,0,0,0,14,13,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,14,13,0,0,0,0,0,0,47,0,0,0,0,0,0,47,0,0,0,0,0,0,47,0,0,0,0,0,0,47] >;

F5×SL2(𝔽3) in GAP, Magma, Sage, TeX

F_5\times {\rm SL}_2({\mathbb F}_3)
% in TeX

G:=Group("F5xSL(2,3)");
// GroupNames label

G:=SmallGroup(480,965);
// by ID

G=gap.SmallGroup(480,965);
# by ID

G:=PCGroup([7,-2,-3,-2,-2,2,-5,-2,42,514,584,221,795,382,4037,1363]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^4=c^4=e^3=1,d^2=c^2,b*a*b^-1=a^3,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=c^-1,e*c*e^-1=d,e*d*e^-1=c*d>;
// generators/relations

׿
×
𝔽