direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C3xQ8:2F5, D20:2C12, C15:14C4wrC2, (C4xF5):2C6, Q8:3(C3xF5), (C3xQ8):5F5, C4.F5:2C6, C4.4(C6xF5), (C3xD20):5C4, (C12xF5):7C2, (Q8xC15):5C4, (C5xQ8):4C12, C60.43(C2xC4), C20.4(C2xC12), (C6xD5).38D4, D10.3(C3xD4), C12.43(C2xF5), Q8:2D5.4C6, (C3xDic5).87D4, Dic5.22(C3xD4), C6.34(C22:F5), C30.34(C22:C4), (D5xC12).85C22, C5:2(C3xC4wrC2), (C3xC4.F5):8C2, C2.9(C3xC22:F5), (C4xD5).10(C2xC6), C10.8(C3xC22:C4), (C3xQ8:2D5).5C2, SmallGroup(480,290)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3xQ8:2F5
G = < a,b,c,d,e | a3=b4=d5=e4=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, cd=dc, ece-1=b-1c, ede-1=d3 >
Subgroups: 360 in 88 conjugacy classes, 32 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C6, C8, C2xC4, D4, Q8, D5, C10, C12, C12, C2xC6, C15, C42, M4(2), C4oD4, Dic5, C20, C20, F5, D10, D10, C24, C2xC12, C3xD4, C3xQ8, C3xD5, C30, C4wrC2, C5:C8, C4xD5, C4xD5, D20, D20, C5xQ8, C2xF5, C4xC12, C3xM4(2), C3xC4oD4, C3xDic5, C60, C60, C3xF5, C6xD5, C6xD5, C4.F5, C4xF5, Q8:2D5, C3xC4wrC2, C3xC5:C8, D5xC12, D5xC12, C3xD20, C3xD20, Q8xC15, C6xF5, Q8:2F5, C3xC4.F5, C12xF5, C3xQ8:2D5, C3xQ8:2F5
Quotients: C1, C2, C3, C4, C22, C6, C2xC4, D4, C12, C2xC6, C22:C4, F5, C2xC12, C3xD4, C4wrC2, C2xF5, C3xC22:C4, C3xF5, C22:F5, C3xC4wrC2, C6xF5, Q8:2F5, C3xC22:F5, C3xQ8:2F5
(1 44 24)(2 45 25)(3 41 21)(4 42 22)(5 43 23)(6 46 26)(7 47 27)(8 48 28)(9 49 29)(10 50 30)(11 51 31)(12 52 32)(13 53 33)(14 54 34)(15 55 35)(16 56 36)(17 57 37)(18 58 38)(19 59 39)(20 60 40)(61 101 81)(62 102 82)(63 103 83)(64 104 84)(65 105 85)(66 106 86)(67 107 87)(68 108 88)(69 109 89)(70 110 90)(71 111 91)(72 112 92)(73 113 93)(74 114 94)(75 115 95)(76 116 96)(77 117 97)(78 118 98)(79 119 99)(80 120 100)
(1 19 9 14)(2 20 10 15)(3 16 6 11)(4 17 7 12)(5 18 8 13)(21 36 26 31)(22 37 27 32)(23 38 28 33)(24 39 29 34)(25 40 30 35)(41 56 46 51)(42 57 47 52)(43 58 48 53)(44 59 49 54)(45 60 50 55)(61 71 66 76)(62 72 67 77)(63 73 68 78)(64 74 69 79)(65 75 70 80)(81 91 86 96)(82 92 87 97)(83 93 88 98)(84 94 89 99)(85 95 90 100)(101 111 106 116)(102 112 107 117)(103 113 108 118)(104 114 109 119)(105 115 110 120)
(1 69 9 64)(2 70 10 65)(3 66 6 61)(4 67 7 62)(5 68 8 63)(11 76 16 71)(12 77 17 72)(13 78 18 73)(14 79 19 74)(15 80 20 75)(21 86 26 81)(22 87 27 82)(23 88 28 83)(24 89 29 84)(25 90 30 85)(31 96 36 91)(32 97 37 92)(33 98 38 93)(34 99 39 94)(35 100 40 95)(41 106 46 101)(42 107 47 102)(43 108 48 103)(44 109 49 104)(45 110 50 105)(51 116 56 111)(52 117 57 112)(53 118 58 113)(54 119 59 114)(55 120 60 115)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)
(2 3 5 4)(6 8 7 10)(11 13 12 15)(16 18 17 20)(21 23 22 25)(26 28 27 30)(31 33 32 35)(36 38 37 40)(41 43 42 45)(46 48 47 50)(51 53 52 55)(56 58 57 60)(61 78 67 75)(62 80 66 73)(63 77 70 71)(64 79 69 74)(65 76 68 72)(81 98 87 95)(82 100 86 93)(83 97 90 91)(84 99 89 94)(85 96 88 92)(101 118 107 115)(102 120 106 113)(103 117 110 111)(104 119 109 114)(105 116 108 112)
G:=sub<Sym(120)| (1,44,24)(2,45,25)(3,41,21)(4,42,22)(5,43,23)(6,46,26)(7,47,27)(8,48,28)(9,49,29)(10,50,30)(11,51,31)(12,52,32)(13,53,33)(14,54,34)(15,55,35)(16,56,36)(17,57,37)(18,58,38)(19,59,39)(20,60,40)(61,101,81)(62,102,82)(63,103,83)(64,104,84)(65,105,85)(66,106,86)(67,107,87)(68,108,88)(69,109,89)(70,110,90)(71,111,91)(72,112,92)(73,113,93)(74,114,94)(75,115,95)(76,116,96)(77,117,97)(78,118,98)(79,119,99)(80,120,100), (1,19,9,14)(2,20,10,15)(3,16,6,11)(4,17,7,12)(5,18,8,13)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35)(41,56,46,51)(42,57,47,52)(43,58,48,53)(44,59,49,54)(45,60,50,55)(61,71,66,76)(62,72,67,77)(63,73,68,78)(64,74,69,79)(65,75,70,80)(81,91,86,96)(82,92,87,97)(83,93,88,98)(84,94,89,99)(85,95,90,100)(101,111,106,116)(102,112,107,117)(103,113,108,118)(104,114,109,119)(105,115,110,120), (1,69,9,64)(2,70,10,65)(3,66,6,61)(4,67,7,62)(5,68,8,63)(11,76,16,71)(12,77,17,72)(13,78,18,73)(14,79,19,74)(15,80,20,75)(21,86,26,81)(22,87,27,82)(23,88,28,83)(24,89,29,84)(25,90,30,85)(31,96,36,91)(32,97,37,92)(33,98,38,93)(34,99,39,94)(35,100,40,95)(41,106,46,101)(42,107,47,102)(43,108,48,103)(44,109,49,104)(45,110,50,105)(51,116,56,111)(52,117,57,112)(53,118,58,113)(54,119,59,114)(55,120,60,115), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (2,3,5,4)(6,8,7,10)(11,13,12,15)(16,18,17,20)(21,23,22,25)(26,28,27,30)(31,33,32,35)(36,38,37,40)(41,43,42,45)(46,48,47,50)(51,53,52,55)(56,58,57,60)(61,78,67,75)(62,80,66,73)(63,77,70,71)(64,79,69,74)(65,76,68,72)(81,98,87,95)(82,100,86,93)(83,97,90,91)(84,99,89,94)(85,96,88,92)(101,118,107,115)(102,120,106,113)(103,117,110,111)(104,119,109,114)(105,116,108,112)>;
G:=Group( (1,44,24)(2,45,25)(3,41,21)(4,42,22)(5,43,23)(6,46,26)(7,47,27)(8,48,28)(9,49,29)(10,50,30)(11,51,31)(12,52,32)(13,53,33)(14,54,34)(15,55,35)(16,56,36)(17,57,37)(18,58,38)(19,59,39)(20,60,40)(61,101,81)(62,102,82)(63,103,83)(64,104,84)(65,105,85)(66,106,86)(67,107,87)(68,108,88)(69,109,89)(70,110,90)(71,111,91)(72,112,92)(73,113,93)(74,114,94)(75,115,95)(76,116,96)(77,117,97)(78,118,98)(79,119,99)(80,120,100), (1,19,9,14)(2,20,10,15)(3,16,6,11)(4,17,7,12)(5,18,8,13)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35)(41,56,46,51)(42,57,47,52)(43,58,48,53)(44,59,49,54)(45,60,50,55)(61,71,66,76)(62,72,67,77)(63,73,68,78)(64,74,69,79)(65,75,70,80)(81,91,86,96)(82,92,87,97)(83,93,88,98)(84,94,89,99)(85,95,90,100)(101,111,106,116)(102,112,107,117)(103,113,108,118)(104,114,109,119)(105,115,110,120), (1,69,9,64)(2,70,10,65)(3,66,6,61)(4,67,7,62)(5,68,8,63)(11,76,16,71)(12,77,17,72)(13,78,18,73)(14,79,19,74)(15,80,20,75)(21,86,26,81)(22,87,27,82)(23,88,28,83)(24,89,29,84)(25,90,30,85)(31,96,36,91)(32,97,37,92)(33,98,38,93)(34,99,39,94)(35,100,40,95)(41,106,46,101)(42,107,47,102)(43,108,48,103)(44,109,49,104)(45,110,50,105)(51,116,56,111)(52,117,57,112)(53,118,58,113)(54,119,59,114)(55,120,60,115), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (2,3,5,4)(6,8,7,10)(11,13,12,15)(16,18,17,20)(21,23,22,25)(26,28,27,30)(31,33,32,35)(36,38,37,40)(41,43,42,45)(46,48,47,50)(51,53,52,55)(56,58,57,60)(61,78,67,75)(62,80,66,73)(63,77,70,71)(64,79,69,74)(65,76,68,72)(81,98,87,95)(82,100,86,93)(83,97,90,91)(84,99,89,94)(85,96,88,92)(101,118,107,115)(102,120,106,113)(103,117,110,111)(104,119,109,114)(105,116,108,112) );
G=PermutationGroup([[(1,44,24),(2,45,25),(3,41,21),(4,42,22),(5,43,23),(6,46,26),(7,47,27),(8,48,28),(9,49,29),(10,50,30),(11,51,31),(12,52,32),(13,53,33),(14,54,34),(15,55,35),(16,56,36),(17,57,37),(18,58,38),(19,59,39),(20,60,40),(61,101,81),(62,102,82),(63,103,83),(64,104,84),(65,105,85),(66,106,86),(67,107,87),(68,108,88),(69,109,89),(70,110,90),(71,111,91),(72,112,92),(73,113,93),(74,114,94),(75,115,95),(76,116,96),(77,117,97),(78,118,98),(79,119,99),(80,120,100)], [(1,19,9,14),(2,20,10,15),(3,16,6,11),(4,17,7,12),(5,18,8,13),(21,36,26,31),(22,37,27,32),(23,38,28,33),(24,39,29,34),(25,40,30,35),(41,56,46,51),(42,57,47,52),(43,58,48,53),(44,59,49,54),(45,60,50,55),(61,71,66,76),(62,72,67,77),(63,73,68,78),(64,74,69,79),(65,75,70,80),(81,91,86,96),(82,92,87,97),(83,93,88,98),(84,94,89,99),(85,95,90,100),(101,111,106,116),(102,112,107,117),(103,113,108,118),(104,114,109,119),(105,115,110,120)], [(1,69,9,64),(2,70,10,65),(3,66,6,61),(4,67,7,62),(5,68,8,63),(11,76,16,71),(12,77,17,72),(13,78,18,73),(14,79,19,74),(15,80,20,75),(21,86,26,81),(22,87,27,82),(23,88,28,83),(24,89,29,84),(25,90,30,85),(31,96,36,91),(32,97,37,92),(33,98,38,93),(34,99,39,94),(35,100,40,95),(41,106,46,101),(42,107,47,102),(43,108,48,103),(44,109,49,104),(45,110,50,105),(51,116,56,111),(52,117,57,112),(53,118,58,113),(54,119,59,114),(55,120,60,115)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120)], [(2,3,5,4),(6,8,7,10),(11,13,12,15),(16,18,17,20),(21,23,22,25),(26,28,27,30),(31,33,32,35),(36,38,37,40),(41,43,42,45),(46,48,47,50),(51,53,52,55),(56,58,57,60),(61,78,67,75),(62,80,66,73),(63,77,70,71),(64,79,69,74),(65,76,68,72),(81,98,87,95),(82,100,86,93),(83,97,90,91),(84,99,89,94),(85,96,88,92),(101,118,107,115),(102,120,106,113),(103,117,110,111),(104,119,109,114),(105,116,108,112)]])
57 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 5 | 6A | 6B | 6C | 6D | 6E | 6F | 8A | 8B | 10 | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 12I | ··· | 12P | 15A | 15B | 20A | 20B | 20C | 24A | 24B | 24C | 24D | 30A | 30B | 60A | ··· | 60F |
order | 1 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 10 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 15 | 15 | 20 | 20 | 20 | 24 | 24 | 24 | 24 | 30 | 30 | 60 | ··· | 60 |
size | 1 | 1 | 10 | 20 | 1 | 1 | 2 | 4 | 5 | 5 | 10 | 10 | 10 | 10 | 4 | 1 | 1 | 10 | 10 | 20 | 20 | 20 | 20 | 4 | 2 | 2 | 4 | 4 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 4 | 4 | 8 | 8 | 8 | 20 | 20 | 20 | 20 | 4 | 4 | 8 | ··· | 8 |
57 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 |
type | + | + | + | + | + | + | + | + | + | + | ||||||||||||||||
image | C1 | C2 | C2 | C2 | C3 | C4 | C4 | C6 | C6 | C6 | C12 | C12 | D4 | D4 | C3xD4 | C3xD4 | C4wrC2 | C3xC4wrC2 | F5 | C2xF5 | C3xF5 | C22:F5 | C6xF5 | C3xC22:F5 | Q8:2F5 | C3xQ8:2F5 |
kernel | C3xQ8:2F5 | C3xC4.F5 | C12xF5 | C3xQ8:2D5 | Q8:2F5 | C3xD20 | Q8xC15 | C4.F5 | C4xF5 | Q8:2D5 | D20 | C5xQ8 | C3xDic5 | C6xD5 | Dic5 | D10 | C15 | C5 | C3xQ8 | C12 | Q8 | C6 | C4 | C2 | C3 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | 1 | 2 | 2 | 4 | 8 | 1 | 1 | 2 | 2 | 2 | 4 | 1 | 2 |
Matrix representation of C3xQ8:2F5 ►in GL6(F241)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 15 | 0 | 0 | 0 |
0 | 0 | 0 | 15 | 0 | 0 |
0 | 0 | 0 | 0 | 15 | 0 |
0 | 0 | 0 | 0 | 0 | 15 |
64 | 0 | 0 | 0 | 0 | 0 |
2 | 177 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
79 | 5 | 0 | 0 | 0 | 0 |
53 | 162 | 0 | 0 | 0 | 0 |
0 | 0 | 240 | 0 | 0 | 0 |
0 | 0 | 0 | 240 | 0 | 0 |
0 | 0 | 0 | 0 | 240 | 0 |
0 | 0 | 0 | 0 | 0 | 240 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 240 | 240 | 240 | 240 |
1 | 0 | 0 | 0 | 0 | 0 |
176 | 64 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 240 | 240 | 240 | 240 |
G:=sub<GL(6,GF(241))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,15,0,0,0,0,0,0,15,0,0,0,0,0,0,15,0,0,0,0,0,0,15],[64,2,0,0,0,0,0,177,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[79,53,0,0,0,0,5,162,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,240,0,0,1,0,0,240,0,0,0,1,0,240,0,0,0,0,1,240],[1,176,0,0,0,0,0,64,0,0,0,0,0,0,1,0,0,240,0,0,0,0,1,240,0,0,0,0,0,240,0,0,0,1,0,240] >;
C3xQ8:2F5 in GAP, Magma, Sage, TeX
C_3\times Q_8\rtimes_2F_5
% in TeX
G:=Group("C3xQ8:2F5");
// GroupNames label
G:=SmallGroup(480,290);
// by ID
G=gap.SmallGroup(480,290);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-5,84,365,344,136,2524,1271,102,9414,1595]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^4=d^5=e^4=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=b^-1*c,e*d*e^-1=d^3>;
// generators/relations