Extensions 1→N→G→Q→1 with N=C3×Q8 and Q=F5

Direct product G=N×Q with N=C3×Q8 and Q=F5
dρLabelID
C3×Q8×F51208C3xQ8xF5480,1056

Semidirect products G=N:Q with N=C3×Q8 and Q=F5
extensionφ:Q→Out NdρLabelID
(C3×Q8)⋊1F5 = Dic102Dic3φ: F5/D5C2 ⊆ Out C3×Q81208(C3xQ8):1F5480,314
(C3×Q8)⋊2F5 = D202Dic3φ: F5/D5C2 ⊆ Out C3×Q81208(C3xQ8):2F5480,315
(C3×Q8)⋊3F5 = Q8×C3⋊F5φ: F5/D5C2 ⊆ Out C3×Q81208(C3xQ8):3F5480,1069
(C3×Q8)⋊4F5 = C3×Q8⋊F5φ: F5/D5C2 ⊆ Out C3×Q81208(C3xQ8):4F5480,289
(C3×Q8)⋊5F5 = C3×Q82F5φ: F5/D5C2 ⊆ Out C3×Q81208(C3xQ8):5F5480,290

Non-split extensions G=N.Q with N=C3×Q8 and Q=F5
extensionφ:Q→Out NdρLabelID
(C3×Q8).F5 = D20.Dic3φ: F5/D5C2 ⊆ Out C3×Q82408(C3xQ8).F5480,1068
(C3×Q8).2F5 = C3×Q8.F5φ: trivial image2408(C3xQ8).2F5480,1055

׿
×
𝔽