Extensions 1→N→G→Q→1 with N=C158M4(2) and Q=C2

Direct product G=N×Q with N=C158M4(2) and Q=C2
dρLabelID
C2×C158M4(2)240C2xC15:8M4(2)480,1071

Semidirect products G=N:Q with N=C158M4(2) and Q=C2
extensionφ:Q→Out NdρLabelID
C158M4(2)⋊1C2 = Dic5.D12φ: C2/C1C2 ⊆ Out C158M4(2)1208+C15:8M4(2):1C2480,250
C158M4(2)⋊2C2 = C5⋊C8.D6φ: C2/C1C2 ⊆ Out C158M4(2)2408C15:8M4(2):2C2480,1003
C158M4(2)⋊3C2 = S3×C22.F5φ: C2/C1C2 ⊆ Out C158M4(2)1208-C15:8M4(2):3C2480,1004
C158M4(2)⋊4C2 = D152M4(2)φ: C2/C1C2 ⊆ Out C158M4(2)1208+C15:8M4(2):4C2480,1007
C158M4(2)⋊5C2 = C5⋊(C12.D4)φ: C2/C1C2 ⊆ Out C158M4(2)1204C15:8M4(2):5C2480,318
C158M4(2)⋊6C2 = Dic10.Dic3φ: C2/C1C2 ⊆ Out C158M4(2)2408C15:8M4(2):6C2480,1066
C158M4(2)⋊7C2 = C60.59(C2×C4)φ: trivial image1204C15:8M4(2):7C2480,1062

Non-split extensions G=N.Q with N=C158M4(2) and Q=C2
extensionφ:Q→Out NdρLabelID
C158M4(2).1C2 = Dic5.4D12φ: C2/C1C2 ⊆ Out C158M4(2)2408-C15:8M4(2).1C2480,251
C158M4(2).2C2 = (C2×C60).C4φ: C2/C1C2 ⊆ Out C158M4(2)2404C15:8M4(2).2C2480,310

׿
×
𝔽