Copied to
clipboard

G = C60.59(C2×C4)  order 480 = 25·3·5

13rd non-split extension by C60 of C2×C4 acting via C2×C4/C2=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×C60).6C4, C60.59(C2×C4), (C4×D5).96D6, D5⋊(C4.Dic3), C12.52(C2×F5), (C2×C12).12F5, C60.C49C2, (D5×C12).13C4, C34(D5⋊M4(2)), (C3×D5)⋊4M4(2), C1512(C2×M4(2)), (C4×D5).5Dic3, C12.F511C2, (C2×C20).8Dic3, C15⋊C812C22, C6.34(C22×F5), C158M4(2)⋊7C2, C30.72(C22×C4), C20.13(C2×Dic3), D10.14(C2×Dic3), (C2×Dic5).208D6, (C22×D5).9Dic3, C10.3(C22×Dic3), Dic5.16(C2×Dic3), (D5×C12).124C22, (C3×Dic5).64C23, Dic5.50(C22×S3), (C6×Dic5).267C22, C4.20(C2×C3⋊F5), (C2×C4×D5).16S3, (D5×C2×C6).15C4, (C2×C4).8(C3⋊F5), C52(C2×C4.Dic3), C2.5(C22×C3⋊F5), C22.6(C2×C3⋊F5), (D5×C2×C12).19C2, (C2×C6).45(C2×F5), (C2×C30).39(C2×C4), (C6×D5).58(C2×C4), (C3×Dic5).66(C2×C4), (C2×C10).15(C2×Dic3), SmallGroup(480,1062)

Series: Derived Chief Lower central Upper central

C1C30 — C60.59(C2×C4)
C1C5C15C30C3×Dic5C15⋊C8C60.C4 — C60.59(C2×C4)
C15C30 — C60.59(C2×C4)
C1C4C2×C4

Generators and relations for C60.59(C2×C4)
 G = < a,b,c | a60=b2=1, c4=a30, ab=ba, cac-1=a17, cbc-1=a30b >

Subgroups: 524 in 136 conjugacy classes, 61 normal (47 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, C6, C6, C8, C2×C4, C2×C4, C23, D5, D5, C10, C10, C12, C12, C2×C6, C2×C6, C15, C2×C8, M4(2), C22×C4, Dic5, C20, D10, D10, C2×C10, C3⋊C8, C2×C12, C2×C12, C22×C6, C3×D5, C3×D5, C30, C30, C2×M4(2), C5⋊C8, C4×D5, C2×Dic5, C2×C20, C22×D5, C2×C3⋊C8, C4.Dic3, C22×C12, C3×Dic5, C60, C6×D5, C6×D5, C2×C30, D5⋊C8, C4.F5, C22.F5, C2×C4×D5, C2×C4.Dic3, C15⋊C8, D5×C12, C6×Dic5, C2×C60, D5×C2×C6, D5⋊M4(2), C60.C4, C12.F5, C158M4(2), D5×C2×C12, C60.59(C2×C4)
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, Dic3, D6, M4(2), C22×C4, F5, C2×Dic3, C22×S3, C2×M4(2), C2×F5, C4.Dic3, C22×Dic3, C3⋊F5, C22×F5, C2×C4.Dic3, C2×C3⋊F5, D5⋊M4(2), C22×C3⋊F5, C60.59(C2×C4)

Smallest permutation representation of C60.59(C2×C4)
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 37)(8 38)(9 39)(10 40)(11 41)(12 42)(13 43)(14 44)(15 45)(16 46)(17 47)(18 48)(19 49)(20 50)(21 51)(22 52)(23 53)(24 54)(25 55)(26 56)(27 57)(28 58)(29 59)(30 60)
(1 116 46 101 31 86 16 71)(2 109 35 118 32 79 5 88)(3 102 24 75 33 72 54 105)(4 95 13 92 34 65 43 62)(6 81 51 66 36 111 21 96)(7 74 40 83 37 104 10 113)(8 67 29 100 38 97 59 70)(9 120 18 117 39 90 48 87)(11 106 56 91 41 76 26 61)(12 99 45 108 42 69 15 78)(14 85 23 82 44 115 53 112)(17 64 50 73 47 94 20 103)(19 110 28 107 49 80 58 77)(22 89 55 98 52 119 25 68)(27 114 60 63 57 84 30 93)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60), (1,116,46,101,31,86,16,71)(2,109,35,118,32,79,5,88)(3,102,24,75,33,72,54,105)(4,95,13,92,34,65,43,62)(6,81,51,66,36,111,21,96)(7,74,40,83,37,104,10,113)(8,67,29,100,38,97,59,70)(9,120,18,117,39,90,48,87)(11,106,56,91,41,76,26,61)(12,99,45,108,42,69,15,78)(14,85,23,82,44,115,53,112)(17,64,50,73,47,94,20,103)(19,110,28,107,49,80,58,77)(22,89,55,98,52,119,25,68)(27,114,60,63,57,84,30,93)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60), (1,116,46,101,31,86,16,71)(2,109,35,118,32,79,5,88)(3,102,24,75,33,72,54,105)(4,95,13,92,34,65,43,62)(6,81,51,66,36,111,21,96)(7,74,40,83,37,104,10,113)(8,67,29,100,38,97,59,70)(9,120,18,117,39,90,48,87)(11,106,56,91,41,76,26,61)(12,99,45,108,42,69,15,78)(14,85,23,82,44,115,53,112)(17,64,50,73,47,94,20,103)(19,110,28,107,49,80,58,77)(22,89,55,98,52,119,25,68)(27,114,60,63,57,84,30,93) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,37),(8,38),(9,39),(10,40),(11,41),(12,42),(13,43),(14,44),(15,45),(16,46),(17,47),(18,48),(19,49),(20,50),(21,51),(22,52),(23,53),(24,54),(25,55),(26,56),(27,57),(28,58),(29,59),(30,60)], [(1,116,46,101,31,86,16,71),(2,109,35,118,32,79,5,88),(3,102,24,75,33,72,54,105),(4,95,13,92,34,65,43,62),(6,81,51,66,36,111,21,96),(7,74,40,83,37,104,10,113),(8,67,29,100,38,97,59,70),(9,120,18,117,39,90,48,87),(11,106,56,91,41,76,26,61),(12,99,45,108,42,69,15,78),(14,85,23,82,44,115,53,112),(17,64,50,73,47,94,20,103),(19,110,28,107,49,80,58,77),(22,89,55,98,52,119,25,68),(27,114,60,63,57,84,30,93)]])

60 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F 5 6A6B6C6D6E6F6G8A···8H10A10B10C12A12B12C12D12E12F12G12H15A15B20A20B20C20D30A···30F60A···60H
order1222223444444566666668···8101010121212121212121215152020202030···3060···60
size11255102112551042221010101030···304442222101010104444444···44···4

60 irreducible representations

dim111111112222222244444444
type++++++-++--+++
imageC1C2C2C2C2C4C4C4S3Dic3D6D6Dic3Dic3M4(2)C4.Dic3F5C2×F5C2×F5C3⋊F5C2×C3⋊F5C2×C3⋊F5D5⋊M4(2)C60.59(C2×C4)
kernelC60.59(C2×C4)C60.C4C12.F5C158M4(2)D5×C2×C12D5×C12C2×C60D5×C2×C6C2×C4×D5C4×D5C4×D5C2×Dic5C2×C20C22×D5C3×D5D5C2×C12C12C2×C6C2×C4C4C22C3C1
# reps122214221221114812124248

Matrix representation of C60.59(C2×C4) in GL6(𝔽241)

112360000
2152310000
0011011000
0013117700
0000131177
0000640
,
100000
010000
00240000
00024000
000010
000001
,
921890000
2231490000
000010
000001
0013117700
0011011000

G:=sub<GL(6,GF(241))| [11,215,0,0,0,0,236,231,0,0,0,0,0,0,110,131,0,0,0,0,110,177,0,0,0,0,0,0,131,64,0,0,0,0,177,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[92,223,0,0,0,0,189,149,0,0,0,0,0,0,0,0,131,110,0,0,0,0,177,110,0,0,1,0,0,0,0,0,0,1,0,0] >;

C60.59(C2×C4) in GAP, Magma, Sage, TeX

C_{60}._{59}(C_2\times C_4)
% in TeX

G:=Group("C60.59(C2xC4)");
// GroupNames label

G:=SmallGroup(480,1062);
// by ID

G=gap.SmallGroup(480,1062);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,56,120,422,80,2693,14118,2379]);
// Polycyclic

G:=Group<a,b,c|a^60=b^2=1,c^4=a^30,a*b=b*a,c*a*c^-1=a^17,c*b*c^-1=a^30*b>;
// generators/relations

׿
×
𝔽